Given:
The equations of parabolas in the options.
To find:
The steepest parabola.
Solution:
We know that, if a parabola is defined as

Then, the greater absolute value of n, the steeper the parabola.
It can be written as


where
, the smaller absolute value of p, the steeper the parabola.
Now, find the value of |p| for eac equation
For option A, 
For option B, 
For option C, 
For option D, 
Since, the equation is option A has smallest value of |p|, therefore, the equation
represents the steepest parabola.
Hence, the correct option is A.
Answer:
y=5-4x / 2
I cant do the fraction symbol
B. -9 is the most negative one, -2 is the least.
Hope this helps you.
Answer:
UV=29
Step-by-step explanation:
In right triangles AQB and AVB,
∠AQB = ∠AVB ...(i) {Right angles}
∠QBA = ∠VBA ...(ii) {Given that they are equal}
We know that sum of all three angles in a triangle is equal to 180 degree. So wee can write sum equation for each triangle
∠AQB+∠QBA+∠BAQ=180 ...(iii)
∠AVB+∠VBA+∠BAV=180 ...(iv)
using (iii) and (iv)
∠AQB+∠QBA+∠BAQ=∠AVB+∠VBA+∠BAV
∠AVB+∠VBA+∠BAQ=∠AVB+∠VBA+∠BAV (using (i) and (ii))
∠BAQ=∠BAV...(v)
Now consider triangles AQB and AVB;
∠BAQ=∠BAV {from (v)}
∠QBA = ∠VBA {from (ii)}
AB=AB {common side}
So using ASA, triangles AQB and AVB are congruent.
We know that corresponding sides of congruent triangles are equal.
Hence
AQ=AV
5x+9=7x+1
9-1=7x-5x
8=2x
divide both sides by 2
4=x
Now plug value of x=4 into UV=7x+1
UV=7*4+1=28+1=29
<u>Hence UV=29 is final answer.</u>