The sum of the external angles of every polygon = 360 degrees
So the n-gon must have its interior angle sum = 360 degrees also.
So what polygon has interior angle sum = 360?
Answer: the answer is 56.2 g
Step-by-step explanation:
562 dg * 1 g/10 dg = 56.2 g
hope i helped
-lvr
Answer:
Step-by-step explanation:
(-∞,-3) U (-3,8) U(8,∞)
Answer
A
Step-by-step explanation:
$\mathrm{Convert\:mixed\:numbers\:to\:improper\:fractions}:\quad6\frac{2}{3}=\frac{20}{3}$
=8\div \frac{20}{3}
=\frac{8}{1}\div \frac{20}{3}
=\frac{8}{1}\times \frac{3}{20}
=\frac{2}{1}\times \frac{3}{5}
=\frac{2\times \:3}{1\times \:5}
=\frac{6}{1\times \:5}
=\frac{6}{5}
Convert improper fractions to mixed numbers
=1\frac{1}{5}
Brainliest plz


_______________________________
<h3>I'm solving it using substitution method:-</h3>
<h3>7x+2y=3 {given}</h3>
<h3>=>7x=3-2y</h3>
<h3>=>x=(3-2y)/7-------(1)</h3>
<h3>x-3y=30 {given}</h3>
<h3>=>x=30+3y</h3>
<h3>=>(3-2y)/7=30+3y {putting the value of x from eqn 1}</h3>
<h3>=>3-2y=210+21y</h3>
<h3>=>3-210=21y+2y</h3>
<h3>=>-207=23y</h3>
<h3>=>y= -207/23= -9</h3>
<h3>putting the value of y on eqn(1):-</h3>
<h3>x=(3-2y)/7</h3>
<h3>x=>(3-2(-9))/7=(3+18)/7=21/7=3</h3>
<h2>Hence, x=3, y= -9</h2>
✌️✌️❤️❤️
_______________________________
