Answer:
4i.
Step-by-step explanation:
To find the flux through the square, we use the divergence theorem for the flux. So Flux of F(x,y) = ∫∫divF(x,y).dA
F(x,y) = hxy,x - yi
div(F(x,y)) = dF(x,y)/dx + dF(x,y)dy = dhxy/dx + d(x - yi)/dy = hy - i
So, ∫∫divF(x,y).dA = ∫∫(hy - i).dA
= ∫∫(hy - i).dxdy
= ∫∫hydxdy - ∫∫idxdy
Since we are integrating along the boundary of the square given by −1 ≤ x ≤ 1, −1 ≤ y ≤ 1, then
∫∫divF(x,y).dA = ∫₋₁¹∫₋₁¹hydxdy - ∫₋₁¹∫₋₁¹idxdy
= h∫₋₁¹{y²/2}¹₋₁dx - i∫₋₁¹[y]₋₁¹dx
= h∫₋₁¹{1²/2 - (-1)/2²}dx - i∫₋₁¹[1 - (-1)]dx
= h∫₋₁¹{1/2 - 1)/2}dx - i∫₋₁¹[1 + 1)]dx
= 0 - i∫₋₁¹2dx
= - 2i[x]₋₁¹
= 2i[1 - (-1)]
= 2i[1 + 1]
= 2i(2)
= 4i
Answer:
k=2
Step-by-step explanation:
3^k*2 * 3^-k+2 = 81
Factor out 81 to be : 3^4
Rewrite the equation:
k*2 - k+2 = 4
k^2 - 2k = 4
Simplify : k+2 = 4
<u> - 2 - 2</u>
k = 2
if its wrong that means you didn't explain it correct tell me if its wrong and ill solve it correctly if you say what's the width, length and height the answer is down below.
Answer: 236 in²
Answer:
D) 50°. You got parallel lines cut by a traversal, so angles 4 and 8 are congruent because they're corresponding angles.
Step-by-step explanation: