Answer:
The domain and the range of the function are, respectively:
![Dom\{f\} = [0\,m,5\,m]](https://tex.z-dn.net/?f=Dom%5C%7Bf%5C%7D%20%3D%20%5B0%5C%2Cm%2C5%5C%2Cm%5D)
![Ran\{f\} = [0\,m^{2}, 10\,m^{2}]](https://tex.z-dn.net/?f=Ran%5C%7Bf%5C%7D%20%3D%20%5B0%5C%2Cm%5E%7B2%7D%2C%2010%5C%2Cm%5E%7B2%7D%5D)
Step-by-step explanation:
Jina represented a function by a graphic approach, where the length, measured in meters, is the domain of the function, whereas the area, measured in square meters, is its range.
![Dom\{f\} = [0\,m,5\,m]](https://tex.z-dn.net/?f=Dom%5C%7Bf%5C%7D%20%3D%20%5B0%5C%2Cm%2C5%5C%2Cm%5D)
![Ran\{f\} = [0\,m^{2}, 10\,m^{2}]](https://tex.z-dn.net/?f=Ran%5C%7Bf%5C%7D%20%3D%20%5B0%5C%2Cm%5E%7B2%7D%2C%2010%5C%2Cm%5E%7B2%7D%5D)
There is an increment of 0.4 in each term. Next will be
[1.5+0.4], [1.5+0.4+0.4]
1.9, 2.3
1/4 because if you divide 4 and 16 by 4, you will get 1/4.
Only one time...............
0 to 90 degrees is located in quadrant one. 90 to 180 degrees is located in quadrant two. 180 to 270 degrees is located in quadrant three. 270 to 360 degrees is located in quadrant four. Is this what you were after?