First, factor out a 3.
3(x² - 9)
In any quadratic ax² + bx + c, we can split the bx term up into two new terms which we want to equal the product of a and c.
In this case, we have x² + 0x - 9. (the 0x is a placeholder)
We want two numbers that add to 0 and multiply to get -9.
Obviously, these numbers are 3 and -3.
Now we have 3(x² + 3x - 3x - 9).
Let's factor.
3(x(x+3)-3(x+3))
<u>3(x-3)(x+3)</u>
There are multiple shortcuts which you could make here, FYI:
Instead of splitting the middle, if your a value is 1, you can go straight to that step (x+number)(x+other number).
Whenever you have a difference of squares, like a²-b², that factors to (a+b)(a-b).
Answer:
x = - 2.5
Step-by-step explanation:
Given that the sketch represents
y = x² + bx + c
The graph crosses the y- axis at (0 , - 14), thus c = - 14
y = x² + bx - 14
Given the graph crosses the x- axis at (2, 0), then
0 = 2² + 2b - 14
0 = 4 + 2b - 14 = 2b - 10 ( add 10 to both sides )
10 = 2b ( divide both sides by 2 )
b = 5
y = x² + 5x - 14 ← represents the graph
let y = 0 , then
x² + 5x - 14 = 0 ← in standard form
(x + 7)(x - 2) = 0 ← in factored form
Equate each factor to zero and solve for x
x + 7 = 0 ⇒ x = - 7
x - 2 = 0 ⇒ x = 2
The x- intercepts are x = - 7 and x = 2
The vertex lies on the axis of symmetry which is midway between the x- intercepts, thus
the x- coordinate of the turning point is = = - 2.5
To determine the amount of water in the first 8 beakers, you will subtract the 19 ml that are in the 9th beaker from the total to see how much water was actually put into the first 8 beakers.
91 ml - 19 ml = 72 ml.
The 72 ml are divided evenly between 8 beakers.
72/8 = 9 ml
There would be 9 ml of water in each of the first 8 beakers.