Answer:
$8 for 3 pounds
cost for p pounds: 3.50p - 2.50
Step-by-step explanation:
Cost of 3 pounds:
Original cost = Cost per pound x 3
= 3.50 x 3
= 10.50
Coupon = 2.50
Final cost = Original cost - Coupon
= 10.50 - 2.50
= $8
Cost of p pounds:
Original cost = Cost per pound x p
= 3.50 x p
= 3.50p
Coupon = 2.50
Final Cost = Original Cost - Coupon
= 3.50p - 2.50
after 5.5 or 5 1/2 minutes the tube will be empty.
Hope this helps:)
Answer:
4986 ounces/m³
Step-by-step explanation:
1 kilogram = 35.274 ounces
1 cubic foot = 0.0283 cubic metre
We are converting kg/ft³ to ounces/m³
Hence:
4kg/ft³ × 35.274 ounces/ 1 kg × 1 ft³/0.0283m³
= 4985.7243816 ounces/m³
Approximately to the nearest whole number = 4986 ounces/m³
Debido a restricciones de extensión y la características del ejercicio, recomendamos leer la explicación de esta pregunta para mayores detalles sobre la adición de números <em>enteros</em>.
<h3>¿Cuáles son los resultados de cada suma?</h3>
En este ejercicio tenemos un grupo de sumas con números <em>enteros</em> <em>positivos</em> y <em>negativos</em>, en las cuales se prueba la capacidad del estudiante para realizar varias operaciones en serie (adición, sustracción) y comprender las diferencias entre números <em>positivos</em>, <em>negativos</em> y <em>neutros</em>. Ahora procedemos a determinar el resultado de cada una de las expresiones:
20 + 50 + 30 + 7 = 107
30 + 5 + 2 = 37
- 200 - 50 - 70 - 8 = - 328
- 500 + 100 - 20 + 50 = - 370
10 - 5 = 5
20 + 50 - 25 - 10 = 35
- 100 + 20 = - 80
- 30 + 5 + 4 - 20 + 8 = - 33
- 258 + 8 = - 250
- 10 + 20 + 520 - 100 + 8 = 438
- 20 - 5 - 42 + 3 = - 64
1000 - 200 + 50 + 30 - 45 + 75 - 87 + 90 + 50 - 100 + 50 - 10 = 903
- 400 + 500 - 200 - 50 + 48 + 8 - 47 - 50 = - 191
300 + 20 - 50 + 30 - 84 + 35 - 7 + 20 - 40 + 10 - 45 + 65 + 8 - 55 = 207
800 + 50 - 69 + 8 - 35 + 85 - 54 + 40 + 85 + 74 - 32 - 8 + 65 - 27 = 982
Para aprender más sobre sumas: brainly.com/question/1456841
#SPJ1
Answer:
25%
Step-by-step explanation:
Percentages are one of several ways of describing quantities' relationships to one another. Specifying one number as a percentage of another means specifying the fraction of the second quantity the first comprises. The percentage value is the number that, divided by 100, equals that fraction. To express the percentage as a whole number, round it accordingly. Some applications, however, don't require percentages as exact whole figures.
Divide the first number the second. For instance, if you want to find what percentage 43 is out of 57, divide 43 by 57 to get 0.754386.