Answer:
Positive angles located in the fourth quadrant may be described as<u> 270≤Ф≤360
.</u>
The option is
4. 270≤Ф≤360
Step-by-step explanation:
When the terminal arm of an angle starts from the x-axis in the anticlockwise direction then the angles are always positive angles.
For Example.
Quadrant I - 0 to 90°
Quadrant II - 90° to 180°
Quadrant III - 180° to 270°
Quadrant IV - 270° to 360° ( 4. 270≤Ф≤360 )
Hence,Positive angles located in the fourth quadrant may be described as<u> 270≤Ф≤360
.</u>
When the terminal arm of an angle starts from the x-axis in the clockwise direction than the angles are negative angles.
Quadrant IV - 0° to -90°
Quadrant III - - 90° to -180°
Quadrant II - -180° to -270°
Quadrant I - -270° to -360°
Please bare with me bc I’m bad at wording things, change it as you please!
It’s a minimum. I know that the function is a minimum because whenever there is a - in the beginning of the equation it flips your parabola over the x axis and my parabola becomes concave down. When my parabola is concave up I have a minimum, vise versa is a maximum. Because there isn’t a -, my parabola is concave up meaning the function has a minimum
Arc AC would be 90 degrees because the line is bisects the straight line (180 Degrees)
Answer: 90 Degrees
Answer:
118,692
Step-by-step explanation:
60 ft = 720 inches
15 ft = 180 inches
6 inches / 720 inches = 1/120
x inches / 180 inches = 1/120
1.5 = 1/120 of 180
The width of the model in inches is 1.5 inches.