Three of the four towns are on the vertices of the triangle ΔCBD, through
which the bearing can calculated.
<h3>Response:</h3>
- The bearing of D from B is approximately <u>209.05°</u>
<h3>Method by which the bearing is found;</h3>
From the given information, we have;
AC = AB = 25 km
∠BAC = 90° (definition of angle between north and east)
ΔABC = An isosceles right triangle (definition)
∠ACD = ∠ABC = 45° (base angles of an isosceles right triangle)

The bearing of <em>D</em> from <em>B</em> is the angle measured from the north of <em>B</em> to the
direction of <em>D.</em>
<em />
Therefore;
- The bearing of D from B ≈ 90° + (180° - 60.945°) = <u>209.05°</u>
Learn more about bearings in mathematics here:
brainly.com/question/10710413
<span>(845,230) +-834 -0.4556= </span>844395.5444
Answer:
<h2>no solution</h2>
Step-by-step explanation:

Answer:
Linear functions change at a constant rate per unit interval. An exponential function changes by a common ratio over equal intervals.
Answer:
34
Step-by-step explanation:
We know the straight line is equal to 180°, and the three angles that make it are (x+12),100°, and x. We can use the equation 180=(x+12)+100+x to find x.
180=(x+12)+100+x
We can remove the parentheses and combine x plus x to 2x.
180=100+2x+12
100+12=112
so
180=112+2x
-112 -112
68=2x
÷2 ÷2
34=x