It is based on shared characteristics
<span>There are two physical differences
between Low pressure systems and </span>High pressure systems.
First, is the circulation surrounding
them.
Secondly, is the atmospheric motion
that they cause.
Low pressure systems circulate counter-clockwise. High pressure systems
circulate clockwise. These "motions" are the
building blocks in our atmosphere. They give us our weather.
A Low’s counter-clockwise circulation forces air upward (ultimately resulting in
condensation, cloud formation and ultimately precipitation). A High’s clockwise
circulation causes a sinking motion in the atmosphere, resulting in fair/clearer
and often sunnier skies.
Answer:
12:3:1
Explanation:
<em>The typical F2 ratio in cases of dominant epistasis is 12:3:1.</em>
<u>The epistasis is a form of gene interaction in which an allele in one locus interacts with and modifies the effects of alleles in another locus</u>. There are different types of epistasis depending on the type of alleles that are interacting. These include:
- Dominant/simple epistasis: Here, a dominant allele on one locus suppresses the expression of both alleles on another locus irrespective of whether they are dominant or recessive. Instead of the Mendelian dihybrid F2 ratio of 9:3:3:1, what is obtained is 12:3:1. Examples of this type of gene interaction are found in seed coat color in barley, skin color in mice, etc.
- Other types of epistasis include <em>recessive epistasis (9:3:4), dominant inhibitory epistasis (13:3), duplicate recessive epistasis (9:7), duplicate dominant epistasis (15:1), and polymeric gene interaction (9:6:1).</em>
Answer:
there r not only 2 types of nests
Cup nest.
Adherent nests.
Platform nests.
Earth-hole nests.
Ground and mound nests.
Scrape nests.
Explanation: