Because triangle ABC is equilateral, FC is 9
9514 1404 393
Answer:
- Constraints: x + y ≤ 250; 250x +400y ≤ 70000; x ≥ 0; y ≥ 0
- Objective formula: p = 45x +50y
- 200 YuuMi and 50 ZBox should be stocked
- maximum profit is $11,500
Step-by-step explanation:
Let x and y represent the numbers of YuuMi and ZBox consoles, respectively. The inventory cost must be at most 70,000, so that constraint is ...
250x +400y ≤ 70000
The number sold will be at most 250 units, so that constraint is ...
x + y ≤ 250
Additionally, we require x ≥ 0 and y ≥ 0.
__
A profit of 295-250 = 45 is made on each YuuMi, and a profit of 450-400 = 50 is made on each ZBox. So, if we want to maximize profit, our objective function is ...
profit = 45x +50y
__
A graph is shown in the attachment. The vertex of the feasible region that maximizes profit is (x, y) = (200, 50).
200 YuuMi and 50 ZBox consoles should be stocked to maximize profit. The maximum monthly profit is $11,500.
Answer:
?????
Step-by-step explanation:
-11 degrees. 6+5=11, and it went down, so negative 11 degrees
The solutions are (2.1925, 5.1925) and (-3.1925, -0.1925)
<em><u>Solution:</u></em>
Given that,

<em><u>We have to substitute eqn 1 in eqn 2</u></em>






Substitute x = 2.1925 in eqn 1
y = 2.1925 + 3
y = 5.1925
Substitute x = -3.1925 in eqn 1
y = -3.1925 + 3
y = -0.1925
Thus the solutions are (2.1925, 5.1925) and (-3.1925, -0.1925)