Answer:
Step 2:
For Completing the square,

Add half coefficient of x square on both the side we get

Step-by-step explanation:
Solve:


Solution:
Step 1:
Dividing both the side by two we get

Step 2:
For Completing the square,

Add half coefficient of x square on both the side we get

Step 3:
We know 

Answer:
r = √13
Step-by-step explanation:
Starting with x^2+y^2+6x-2y+3, group like terms, first x terms and then y terms: x^2 + 6x + y^2 -2y = 3. Please note that there has to be an " = " sign in this equation, and that I have taken the liberty of replacing " +3" with " = 3 ."
We need to "complete the square" of x^2 + 6x. I'll just jump in and do it: Take half of the coefficient of the x term and square it; add, and then subtract, this square from x^2 + 6x: x^2 + 6x + 3^2 - 3^2. Then do the same for y^2 - 2y: y^2 - 2y + 1^2 - 1^2.
Now re-write the perfect square x^2 + 6x + 9 by (x + 3)^2. Then we have x^2 + 6x + 9 - 9; also y^2 - 1y + 1 - 1. Making these replacements:
(x + 3)^2 - 9 + (y - 1)^2 -1 = 3. Move the constants -9 and -1 to the other side of the equation: (x + 3)^2 + (y - 1)^2 = 3 + 9 + 1 = 13
Then the original equation now looks like (x + 3)^2 + (y - 1)^2 = 13, and this 13 is the square of the radius, r: r^2 = 13, so that the radius is r = √13.
Step-by-step explanation:
choice 2 ..............
Answer:
4.44
Step-by-step explanation:
Total NM of ball=18,
black ball=4
p(black,black)=?
p(black,black)=p(b)+p(b)
4/18+4/18=4.44ans
Answer:
29.5+/-1.11
= ( 28.39, 30.61)
Therefore, the 90% confidence interval (a,b) =( 28.39, 30.61)
Step-by-step explanation:
Confidence interval can be defined as a range of values so defined that there is a specified probability that the value of a parameter lies within it.
The confidence interval of a statistical data can be written as.
x+/-zr/√n
Given that;
Mean x = 29.5
Standard deviation r = 5.2
Number of samples n = 59
Confidence interval = 90%
z-value (at 90% confidence) = 1.645
Substituting the values we have;
29.5+/-1.645(5.2/√59)
29.5+/-1.645(0.676982337100)
29.5+/-1.113635944529
29.5+/-1.11
= ( 28.39, 30.61)
Therefore, the 90% confidence interval (a,b) =( 28.39, 30.61)