Answer:
The pvalue of 0.0113 < 0.05 means that there is sufficient evidence to conclude that the mean time to find another position is less than 28 weeks at the 5% level of significance
Step-by-step explanation:
The null hypothesis is:

The alternate hypotesis is:

The test statistic is:

In which X is the sample mean,
is the value tested at the null hypothesis,
is the standard deviation and n is the size of the sample.
A recent survey of 50 executives who were laid off during a recent recession revealed it took a mean of 26 weeks for them to find another position.
This means that 
Assume the population standard deviation is 6.2 weeks.
This means that 
Does the data provide sufficient evidence to conclude that the mean time to find another position is less than 28 weeks at the 5% level of significance
We have to find the pvalue of Z, looking at the z-table, when
. It if is lower than 0.05, it provides evidence.



has a pvalue of 0.0113 < 0.05.
The pvalue of 0.0113 < 0.05 means that there is sufficient evidence to conclude that the mean time to find another position is less than 28 weeks at the 5% level of significance
Answer:
It might be 6 not entirely sure
Step-by-step explanation:
Answer:
try Math
way
Step-by-step explanation:
Answer: it is c all u have to do seach up desmos in put in the graph promblem is will show u the answer
Step-by-step explanation:
Answer:
The third option listed: ![\sqrt[3]{2x} -6\sqrt[3]{x}\\](https://tex.z-dn.net/?f=%5Csqrt%5B3%5D%7B2x%7D%20-6%5Csqrt%5B3%5D%7Bx%7D%5C%5C)
Step-by-step explanation:
We start by writing all the numerical factors inside the qubic roots in factor form (and if possible with exponent 3 so as to easily identify what can be extracted from the root):
![7\sqrt[3]{2x} -3\sqrt[3]{16x} -3\sqrt[3]{8x} =\\=7\sqrt[3]{2x} -3\sqrt[3]{2^32x} -3\sqrt[3]{2^3x} =\\=7\sqrt[3]{2x} -3*2\sqrt[3]{2x} -3*2\sqrt[3]{x}=\\=7\sqrt[3]{2x} -6\sqrt[3]{2x} -6\sqrt[3]{x}](https://tex.z-dn.net/?f=7%5Csqrt%5B3%5D%7B2x%7D%20%20-3%5Csqrt%5B3%5D%7B16x%7D%20-3%5Csqrt%5B3%5D%7B8x%7D%20%3D%5C%5C%3D7%5Csqrt%5B3%5D%7B2x%7D%20%20-3%5Csqrt%5B3%5D%7B2%5E32x%7D%20-3%5Csqrt%5B3%5D%7B2%5E3x%7D%20%3D%5C%5C%3D7%5Csqrt%5B3%5D%7B2x%7D%20%20-3%2A2%5Csqrt%5B3%5D%7B2x%7D%20-3%2A2%5Csqrt%5B3%5D%7Bx%7D%3D%5C%5C%3D7%5Csqrt%5B3%5D%7B2x%7D%20%20-6%5Csqrt%5B3%5D%7B2x%7D%20-6%5Csqrt%5B3%5D%7Bx%7D)
And now we combine all like terms (notice that the only two terms we can combine are the first two, which contain the exact same radical form:
![7\sqrt[3]{2x} -6\sqrt[3]{2x} -6\sqrt[3]{x}=\\=\sqrt[3]{2x} -6\sqrt[3]{x}](https://tex.z-dn.net/?f=7%5Csqrt%5B3%5D%7B2x%7D%20%20-6%5Csqrt%5B3%5D%7B2x%7D%20-6%5Csqrt%5B3%5D%7Bx%7D%3D%5C%5C%3D%5Csqrt%5B3%5D%7B2x%7D%20-6%5Csqrt%5B3%5D%7Bx%7D)
Therefore this is the simplified radical expression: ![\sqrt[3]{2x} -6\sqrt[3]{x}\\](https://tex.z-dn.net/?f=%5Csqrt%5B3%5D%7B2x%7D%20-6%5Csqrt%5B3%5D%7Bx%7D%5C%5C)