Answer:
Step-by-step explanation:
roots of a complex number is given by DeMoivre's formula.
![\sf \boxed{\bf r^{\frac{1}{n}}\left[Cos \dfrac{\theta + 2\pi k}{n}+i \ Sin \ \dfrac{\theta+2\pi k}{n}\right]}](https://tex.z-dn.net/?f=%5Csf%20%5Cboxed%7B%5Cbf%20r%5E%7B%5Cfrac%7B1%7D%7Bn%7D%7D%5Cleft%5BCos%20%5Cdfrac%7B%5Ctheta%20%2B%202%5Cpi%20k%7D%7Bn%7D%2Bi%20%5C%20Sin%20%5C%20%5Cdfrac%7B%5Ctheta%2B2%5Cpi%20k%7D%7Bn%7D%5Cright%5D%7D)
Here, k lies between 0 and (n -1) ; n is the exponent.

a = -1 and b = √3




n = 4
For k = 0,
![\sf z = \sqrt[4]{10}\left[Cos \ \dfrac{\dfrac{-\pi}{3} +0}{4}+iSin \ \dfrac{\dfrac{-\pi}{3}+0}{4}\right] \\\\\\z= \sqrt[4]{10} \left[Cos \ \dfrac{ -\pi }{12}+iSin \ \dfrac{-\pi}{12}\right]\\\\\\z = \sqrt[4]{10}\left[-Cos \ \dfrac{\pi}{12}-i \ Sin \ \dfrac{\pi}{12}\right]](https://tex.z-dn.net/?f=%5Csf%20z%20%3D%20%5Csqrt%5B4%5D%7B10%7D%5Cleft%5BCos%20%5C%20%5Cdfrac%7B%5Cdfrac%7B-%5Cpi%7D%7B3%7D%20%2B0%7D%7B4%7D%2BiSin%20%20%5C%20%5Cdfrac%7B%5Cdfrac%7B-%5Cpi%7D%7B3%7D%2B0%7D%7B4%7D%5Cright%5D%20%5C%5C%5C%5C%5C%5Cz%3D%20%5Csqrt%5B4%5D%7B10%7D%20%5Cleft%5BCos%20%5C%20%5Cdfrac%7B%20-%5Cpi%20%20%7D%7B12%7D%2BiSin%20%20%5C%20%5Cdfrac%7B-%5Cpi%7D%7B12%7D%5Cright%5D%5C%5C%5C%5C%5C%5Cz%20%3D%20%5Csqrt%5B4%5D%7B10%7D%5Cleft%5B-Cos%20%5C%20%5Cdfrac%7B%5Cpi%7D%7B12%7D-i%20%5C%20Sin%20%5C%20%5Cdfrac%7B%5Cpi%7D%7B12%7D%5Cright%5D)
For k =1,
![\sf z = \sqrt[4]{10}\left[Cos \ \dfrac{5\pi}{12}+i \ Sin \ \dfrac{5\pi}{12}\right]](https://tex.z-dn.net/?f=%5Csf%20z%20%3D%20%5Csqrt%5B4%5D%7B10%7D%5Cleft%5BCos%20%5C%20%5Cdfrac%7B5%5Cpi%7D%7B12%7D%2Bi%20%5C%20Sin%20%5C%20%5Cdfrac%7B5%5Cpi%7D%7B12%7D%5Cright%5D)
For k =2,
![z = \sqrt[4]{10}\left[Cos \ \dfrac{11\pi}{12}+i \ Sin \ \dfrac{11\pi}{12}\right]](https://tex.z-dn.net/?f=z%20%3D%20%5Csqrt%5B4%5D%7B10%7D%5Cleft%5BCos%20%5C%20%5Cdfrac%7B11%5Cpi%7D%7B12%7D%2Bi%20%5C%20Sin%20%5C%20%5Cdfrac%7B11%5Cpi%7D%7B12%7D%5Cright%5D)
For k = 3,
![\sf z = \sqrt[4]{10}\left[Cos \ \dfrac{17\pi}{12}+i \ Sin \ \dfrac{17\pi}{12}\right]](https://tex.z-dn.net/?f=%5Csf%20z%20%3D%20%5Csqrt%5B4%5D%7B10%7D%5Cleft%5BCos%20%5C%20%5Cdfrac%7B17%5Cpi%7D%7B12%7D%2Bi%20%5C%20Sin%20%5C%20%5Cdfrac%7B17%5Cpi%7D%7B12%7D%5Cright%5D)
For k = 4,
![\sf z =\sqrt[4]{10}\left[Cos \ \dfrac{23\pi}{12}+i \ Sin \ \dfrac{23\pi}{12}\right]](https://tex.z-dn.net/?f=%5Csf%20z%20%3D%5Csqrt%5B4%5D%7B10%7D%5Cleft%5BCos%20%5C%20%5Cdfrac%7B23%5Cpi%7D%7B12%7D%2Bi%20%5C%20Sin%20%5C%20%5Cdfrac%7B23%5Cpi%7D%7B12%7D%5Cright%5D)
Answer: the number of multiple-choice questions in the math test is 35 and the number of open-ended questions in the math test is 3
Step-by-step explanation:
Let x represent the number of multiple-choice questions in the math test.
Let y represent the number of open-ended questions in the math test.
The math test has 38 questions. It means that
x + y = 38
This test consists of multiple-choice questions worth 4 points each and open-ended questions worth 20 points each. The total number of points is 200. It means that
4x + 20y = 200 - - - - - - - - - -1
Substituting x = 38 - y into equation 1, it becomes
4(38 - y) + 20y = 200
152 - 4y + 20y = 200
- 4y + 20y = 200 - 152
16y = 48
48/16
y = 3
Substituting y = 3 into x = 38 - y, it becomes
x = 38 - 3 = 35
Answer:
12
Step-by-step explanation:
f(x) = -x^3 + x^2
Let x = -2
Evaluate the expression
f(-2) = -(-2)^3 + (-2)^2
= - (-2)*(-2) * (-2) + ( -2) * (-2)
= -(-8) + ( 4)
= 8 + 4
= 12
Let the length of the shortest side = x
The two longer sides that are equal = 3x
The are two equal longer sides, so their total is 3x + 3x = 6x
3x+ 3x + x= 35 Collect like terms on the left
7x = 35 Divide by 7 on both sides
x = 35/7
x = 5
Answer
Two long sides -- 15 cm each
Shortest side -- 5 cm