ANSWER:
E[X] ≈ m ln m
STEP-BY-STEP EXPLANATION:
Hint: Let X be the number needed. It is useful to represent X by
m
X = ∑ Xi
i=1
where each Xi is a geometric random variable
Solution: Assume that there is a sufficiently large number of coupons such that removing a finite number of them does not change the probability that a coupon of a given type is draw. Let X be the number of coupons picked
m
X = ∑ Xi
i=1
where Xi is the number of coupons picked between drawing the (i − 1)th coupon type and drawing i th coupon type. It should be clear that X1 = 1. Also, for each i:
Xi ∼ geometric
P r{Xi = n} =
Such a random variable has expectation:
E [Xi
] =
= 
Next we use the fact that the expectation of a sum is the sum of the expectation, thus:
m m m m
E[X] = E ∑ Xi = ∑ E Xi = ∑
= m ∑
= mHm
i=1 i=1 i=1 i=1
In the case of large m this takes on the limit:
E[X] ≈ m ln m
Answer:2x−5=−5
Add 5
to both sides of the equation.
2x=−5+5
Add −5
and 5
.
2x=0
Divide each term by 2
and simplify.
Divide each term in 2x=0
by 2
.
2x2=02
Cancel the common factor of 2
.
Cancel the common factor.
2
x2=02
Step-by-step explanation:
Apply the distributive property.
x⋅2+2⋅2−9=−5
Move 2
to the left of x
.
2⋅x+2⋅2−9=−5
Multiply 2
by 2
.
2x+4−9=−5
Subtract 9
from 4
.
Answer:
-7 + 8 m + 4 n thus A. is your Answer
Step-by-step explanation:
Expand the following:
-(-8 m - 4 n + 7)
-(7 - 8 m - 4 n) = -7 - -8 m - -4 n:
-7 - -8 m - -4 n
-(-8) = 8:
-7 + 8 m - -4 n
-(-4) = 4:
Answer: -7 + 8 m + 4 n
Answer:
x<15
Step-by-step explanation:
2x^4(or 2x to the fourth power