Let,
f(x) = -2x+34
g(x) = (-x/3) - 10
h(x) = -|3x|
k(x) = (x-2)^2
This is a trial and error type of problem (aka "guess and check"). There are 24 combinations to try out for each problem, so it might take a while. It turns out that
g(h(k(f(15)))) = -6
f(k(g(h(8)))) = 2
So the order for part A should be: f, k, h, g
The order for part B should be: h, g, k f
note how I'm working from the right and moving left (working inside and moving out).
Here's proof of both claims
-----------------------------------------
Proof of Claim 1:
f(x) = -2x+34
f(15) = -2(15)+34
f(15) = 4
-----------------
k(x) = (x-2)^2
k(f(15)) = (f(15)-2)^2
k(f(15)) = (4-2)^2
k(f(15)) = 4
-----------------
h(x) = -|3x|
h(k(f(15))) = -|3*k(f(15))|
h(k(f(15))) = -|3*4|
h(k(f(15))) = -12
-----------------
g(x) = (-x/3) - 10
g(h(k(f(15))) ) = (-h(k(f(15))) /3) - 10
g(h(k(f(15))) ) = (-(-12) /3) - 10
g(h(k(f(15))) ) = -6
-----------------------------------------
Proof of Claim 2:
h(x) = -|3x|
h(8) = -|3*8|
h(8) = -24
---------------
g(x) = (-x/3) - 10
g(h(8)) = (-h(8)/3) - 10
g(h(8)) = (-(-24)/3) - 10
g(h(8)) = -2
---------------
k(x) = (x-2)^2
k(g(h(8))) = (g(h(8))-2)^2
k(g(h(8))) = (-2-2)^2
k(g(h(8))) = 16
---------------
f(x) = -2x+34
f(k(g(h(8))) ) = -2*(k(g(h(8))) )+34
f(k(g(h(8))) ) = -2*(16)+34
f(k(g(h(8))) ) = 2
Answer:
The answer
Step-by-step explanation:
The Volume of the barn is 40,000 ft
Answer:
mostly rational but sometimes irrational
<h2>
Hello!</h2>
The answer is:
The range of the function is:
Range: y>2
or
Range: (2,∞+)
<h2>
Why?</h2>
To calculate the range of the following function (exponential function) we need to perform the following steps:
First: Find the value of "x"
So, finding "x" we have:

Second: Interpret the restriction of the function:
Since we are working with logarithms, we know that the only restriction that we found is that the logarithmic functions exist only from 0 to the possitive infinite without considering the number 1.
So, we can see that if the variable "x" is a real number, "y" must be greater than 2 because if it's equal to 2 the expression inside the logarithm will tend to 0, and since the logarithm of 0 does not exist in the real numbers, the variable "x" would not be equal to a real number.
Hence, the range of the function is:
Range: y>2
or
Range: (2,∞+)
Note: I have attached a picture (the graph of the function) for better understanding.
Have a nice day!
Walk 14% ride bike 8% Car 18% Bus 60%
OPTION B
CAN I GET BRAINLIEST PLS