The Soccer ball has measurable volume
Py +7 = 6y + qp
Solve the equation for y
To solve the equation for y we need to get y alone
Py +7 = 6y + qp
Subtract 6y from both sides
Py - 6y +7 = + qp
Subtract 7 from both sides
Py - 6y = + qp - 7
Now factor out y
(P - 6)y = qp - 7
Divide by P - 6 from both sides
![y =\frac{qp - 7}{(P - 6)}](https://tex.z-dn.net/?f=y%20%3D%5Cfrac%7Bqp%20-%207%7D%7B%28P%20-%206%29%7D)
I will use a quadratic formula:
Keywords:
<em>Division, quotient, polynomial, monomial
</em>
For this case we must solve a division between a polynomial and a monomial and indicate which is the quotient.
By definition, if we have a division of the form:
, the quotient is given by "c".
We have the following polynomial:
that must be divided between monomy
, then:
represents the quotient of the division:
![C (y) = \frac {65y ^ 3 + 15y ^ 2 - 25y} {5y}](https://tex.z-dn.net/?f=C%20%28y%29%20%3D%20%5Cfrac%20%7B65y%20%5E%203%20%2B%2015y%20%5E%202%20-%2025y%7D%20%7B5y%7D)
![C (y) = \frac {65y ^ 3} {5y} + \frac {15y ^ 2} {5y} - \frac {25y} {5y}](https://tex.z-dn.net/?f=C%20%28y%29%20%3D%20%5Cfrac%20%7B65y%20%5E%203%7D%20%7B5y%7D%20%2B%20%5Cfrac%20%7B15y%20%5E%202%7D%20%7B5y%7D%20-%20%5Cfrac%20%7B25y%7D%20%7B5y%7D)
![C (y) = 13y ^ 2 + 3y-5](https://tex.z-dn.net/?f=C%20%28y%29%20%3D%2013y%20%5E%202%20%2B%203y-5)
Thus, the quotient of the division between the polynomial and the monomial is given by:
![C (y) = 13y ^ 2 + 3y-5](https://tex.z-dn.net/?f=C%20%28y%29%20%3D%2013y%20%5E%202%20%2B%203y-5)
Answer:
The quotient is: ![C (y) = 13y ^ 2 + 3y-5](https://tex.z-dn.net/?f=C%20%28y%29%20%3D%2013y%20%5E%202%20%2B%203y-5)
Option: A
The answer is G. as per absolute value.