<span>So, what you want is the biggest square that can evenly tile a space 240*300. The biggest possible number that can divide 240 and 300. Does that ring any bells? Maybe you should divide 240 and 300</span>
Answer:
(4,5)
Step-by-step explanation:
The equation of a circle that has centre coordinates (a,b) and radius r is
(x-a)^2+(y-b)^2=r^2
so (4,5) satisfy the equation
3^2+4^2=9+16=25
Answer:

Step-by-step explanation:
So, the function, P(t), represents the number of cells after t hours.
This means that the derivative, P'(t), represents the instantaneous rate of change (in cells per hour) at a certain point t.
C)
So, we are given that the quadratic curve of the trend is the function:

To find the <em>instanteous</em> rate of growth at t=5 hours, we must first differentiate the function. So, differentiate with respect to t:
![\frac{d}{dt}[P(t)]=\frac{d}{dt}[6.10t^2-9.28t+16.43]](https://tex.z-dn.net/?f=%5Cfrac%7Bd%7D%7Bdt%7D%5BP%28t%29%5D%3D%5Cfrac%7Bd%7D%7Bdt%7D%5B6.10t%5E2-9.28t%2B16.43%5D)
Expand:
![P'(t)=\frac{d}{dt}[6.10t^2]+\frac{d}{dt}[-9.28t]+\frac{d}{dt}[16.43]](https://tex.z-dn.net/?f=P%27%28t%29%3D%5Cfrac%7Bd%7D%7Bdt%7D%5B6.10t%5E2%5D%2B%5Cfrac%7Bd%7D%7Bdt%7D%5B-9.28t%5D%2B%5Cfrac%7Bd%7D%7Bdt%7D%5B16.43%5D)
Move the constant to the front using the constant multiple rule. The derivative of a constant is 0. So:
![P'(t)=6.10\frac{d}{dt}[t^2]-9.28\frac{d}{dt}[t]](https://tex.z-dn.net/?f=P%27%28t%29%3D6.10%5Cfrac%7Bd%7D%7Bdt%7D%5Bt%5E2%5D-9.28%5Cfrac%7Bd%7D%7Bdt%7D%5Bt%5D)
Differentiate. Use the power rule:

Simplify:

So, to find the instantaneous rate of growth at t=5, substitute 5 into our differentiated function:

Multiply:

Subtract:

This tells us that at <em>exactly</em> t=5, the rate of growth is 51.72 cells per hour.
And we're done!
51450 divided by 98
is 525 with remainder 0
0 0 5 2 5
9 8| 5 1 4 5 0
0
5 1
0
5 1 4
4 9 0
2 4 5
1 9 6
4 9 0
4 9 0
0
-32 = 4c -12
add -34 by 12 which is -20
divide it by 4
c = -5