Answer:
The correct answer is "$ 30.34".
Explanation:
The value of the stock can be computed by the following formula:
⇒ ![\frac{Dividend \ in \ year \ 3}{(1 + Required \ return \ rate)2} + \frac{Dividend \ in \ year \ 4}{(1 + Required \ return \ rate)3} + \frac{Dividend \ in \ year \ 5}{(1 + Required \ return \ rate) 4 } + \frac{1}{(1 + Required \ return \ rate)4 }\times [\frac{( Dividend \ in \ year \ 5 (1 + Growth \ rate)} {( Required \ return \ rate - Growth \ rate)}]](https://tex.z-dn.net/?f=%5Cfrac%7BDividend%20%5C%20in%20%5C%20year%20%5C%203%7D%7B%281%20%2B%20Required%20%5C%20return%20%5C%20rate%292%7D%20%20%2B%20%5Cfrac%7BDividend%20%5C%20in%20%5C%20year%20%5C%204%7D%7B%281%20%2B%20Required%20%5C%20return%20%5C%20rate%293%7D%20%20%2B%20%5Cfrac%7BDividend%20%5C%20in%20%5C%20year%20%5C%205%7D%7B%281%20%2B%20Required%20%5C%20return%20%5C%20rate%29%204%20%7D%20%2B%20%5Cfrac%7B1%7D%7B%281%20%2B%20Required%20%5C%20return%20%5C%20rate%294%20%7D%5Ctimes%20%5B%5Cfrac%7B%28%20Dividend%20%5C%20in%20%5C%20year%20%5C%205%20%281%20%2B%20Growth%20%5C%20rate%29%7D%20%7B%28%20Required%20%5C%20return%20%5C%20rate%20-%20Growth%20%5C%20rate%29%7D%5D)
On putting the values, we get
⇒ ![\frac{1.50}{1.08^2} + \frac{1.60}{1.08^3} + \frac{1.75}{1.08^4 } + \frac{1}{1.08^4} \times [ \frac{( 1.75\times 1.03)}{(0.08 - 0.03)}]](https://tex.z-dn.net/?f=%5Cfrac%7B1.50%7D%7B1.08%5E2%7D%20%20%2B%20%5Cfrac%7B1.60%7D%7B1.08%5E3%7D%20%20%2B%20%5Cfrac%7B1.75%7D%7B1.08%5E4%20%7D%20%2B%20%5Cfrac%7B1%7D%7B1.08%5E4%7D%20%5Ctimes%20%5B%20%20%5Cfrac%7B%28%201.75%5Ctimes%201.03%29%7D%7B%280.08%20-%200.03%29%7D%5D)
⇒ 
⇒
($)
Professional growth and development - Bob
Mentoring - Debby
Certification - Joseph
Scholarship - Libby
Networking - Chad
Answer:
$16,394.26
Explanation:
using a loan calculator we can determine the amount of interest paid in both loans:
<u>loan 1</u> <u>loan 2</u>
n = 30 years n = 30 years
principal = $200,000 principal = $200,000
APR = 4% APR = 3.6%
monthly payment = $954.83 monthly payment = $909.29
total interest paid = $143,739.01 total interest paid = $127,344.65
the difference in total interest paid between both loans = $143,739.01 - $127,344.65 = $16,394.26
the difference in monthly payment between both loans = $954.83 - $909.29 = $45.54