The main form is carbon dioxide and methane
I remember the secondary structure by visualizing it. Understand that primary structure is just the order of the amino acids. The tertiary structure is the 3dimensional configuration of the whole protein molecule with multiple interactions guiding its fold (disulfide bonds, ionic interactions, hydrogen bonds, van der walls). Secondary structure is a step towards the conformation of the protein where it is made up of either alpha-helices or beta-pleated sheets. The alpha helices look like a spiraling staircase while the beta-pleated sheets look like a repetition of long loops. These two structures hold itself by hydrogen bonds.
Answer:
The article is not reflecting current knowledge.
Explanation:
Rick Potts had explained some thing which has already been established and published several years back by various scientist, researchers, biologist, ecologists and geologist.
Re publishing something again will not bring laurel to Pott, instead his article would not be considered a suitable article for reference.
Also , if Pott would have published any thing that talks of a way ahead of those previous publication, even then his article could be referred.
Answer:
1. Acetylcholine binds to receptors on the motor end plate
2. Ligand-gated channels open leading to depolarization
3. End plate potential triggers an action potential
4. Transverse tubules convey action potentials into the interior of the muscle fiber
5. Calcium is released from the sarcoplasmic reticulum
6. Calcium ions bind to troponin, which then moves tropomyosin
Explanation:
Acetylcholine (ACh) is a signaling molecule (neurotransmitter) that binds to receptors on muscle cells. This binding triggers the opening of ligand-gated sodium channels, thereby ions enter into muscle cells, which causes the depolarization of the sarcolemma and thus promotes the release of Ca2+ ions from the sarcoplasmic reticulum. The myoneural junction, also known as the motor endplate, is the site of synaptic contact between a motor axon and a skeletal muscle fiber. The endplate potential is the voltage that produces the depolarization of muscle fibers when ACh molecules bind to their receptors in the cell membrane. This depolarization spreads in the sarcolemma through transverse tubules (T tubules) and thus generates an action potential. Finally, this action potential induces the release of Ca2+ in the sarcoplasmic reticulum, which activates troponin protein and induces muscle contraction.