Answer:
• Slope is the derivative of the function:
![{ \rm{f(x) = {x}^{3} + 3 {x}^{2} + 3x + 1 }} \\ \\ { \tt{ \frac{dy}{dx} = 3 {x}^{2} + 6x + 3 + 0 }}](https://tex.z-dn.net/?f=%7B%20%5Crm%7Bf%28x%29%20%3D%20%20%7Bx%7D%5E%7B3%7D%20%20%2B%203%20%7Bx%7D%5E%7B2%7D%20%2B%203x%20%2B%201%20%7D%7D%20%5C%5C%20%20%5C%5C%20%7B%20%5Ctt%7B%20%5Cfrac%7Bdy%7D%7Bdx%7D%20%20%3D%203%20%7Bx%7D%5E%7B2%7D%20%2B%206x%20%2B%203%20%2B%200%20%7D%7D)
• At, x = 0
![{ \tt{ \frac{dy}{dx} = 3 {(0)}^{2} + 6(0) + 3}} \\ \\ { \boxed{ \tt{slope = 3}}}](https://tex.z-dn.net/?f=%7B%20%5Ctt%7B%20%5Cfrac%7Bdy%7D%7Bdx%7D%20%20%3D%203%20%7B%280%29%7D%5E%7B2%7D%20%20%2B%206%280%29%20%2B%203%7D%7D%20%5C%5C%20%20%5C%5C%20%7B%20%5Cboxed%7B%20%5Ctt%7Bslope%20%3D%203%7D%7D%7D)
Answer:
work it out and tried to found answer to problem that are tried solve
Answer:
He omitted the value "6" from the input value and added it to the output values. Also, he omitted the value "12" as an output value.
Step-by-step explanation:
Bobby didn't map the relation well. He omitted "6" which is supposed to be an input value and rather included it among the output values (y-values).
"12" was omitted also under output values.
All of these make the the relation not to be a function anymore.
If Bobby had mapped the relation well, the ordered pair would have obviously been a function as every x-value will have exactly one y-value assigned the it.