Answer:
10.9
Step-by-step explanation:
4 1/2 plus 6 2/5=10.9
The factors of 8 are 1, 2, 4, and 8.
The factors of 24 are 1, 2, 3, 4, 6, 8, 12, and 24.
The largest factor that is in both these lists is 8, therefore, the greatest common factor os 8 and 24 is 8.
Hope this helped! (:
Answer:
![\left[\begin{array}{ccc}3&-5 &|12\\4&-2 &|15\\\end{array}\right]](https://tex.z-dn.net/?f=%5Cleft%5B%5Cbegin%7Barray%7D%7Bccc%7D3%26-5%20%20%26%7C12%5C%5C4%26-2%20%20%26%7C15%5C%5C%5Cend%7Barray%7D%5Cright%5D)
Step-by-step explanation:
When making a matrix of two equations with the variables x and y, the result will be a matrix with three columns:
- a column for the values of x in each equation
- a column for the values of y in each equation
- a column for the independent values of each equation
since our system of equations is:

we can see that the value for x in the first equation is 3 and in the second equation is 4, thus the first column will have the numbers 3 and 4:
![\left[\begin{array}{ccc}3&&\\4&&\\\end{array}\right]](https://tex.z-dn.net/?f=%5Cleft%5B%5Cbegin%7Barray%7D%7Bccc%7D3%26%26%5C%5C4%26%26%5C%5C%5Cend%7Barray%7D%5Cright%5D)
Now for the values of y we hvae -5 in the first equation and -2 in the second equation, we update the matrix with another column with the values of -5 and -2:
![\left[\begin{array}{ccc}3&-5&\\4&-2&\\\end{array}\right]](https://tex.z-dn.net/?f=%5Cleft%5B%5Cbegin%7Barray%7D%7Bccc%7D3%26-5%26%5C%5C4%26-2%26%5C%5C%5Cend%7Barray%7D%5Cright%5D)
Finally, the last column is the independent values of each equation (or the results) in the first equation that number is 12 and in the second equation is 15, thus the matrix is:
![\left[\begin{array}{ccc}3&-5&12\\4&-2&15\\\end{array}\right]](https://tex.z-dn.net/?f=%5Cleft%5B%5Cbegin%7Barray%7D%7Bccc%7D3%26-5%2612%5C%5C4%26-2%2615%5C%5C%5Cend%7Barray%7D%5Cright%5D)
usually there is a line separating the columns for the values of x and y, and the independent values:
![\left[\begin{array}{ccc}3&-5 &|12\\4&-2 &|15\\\end{array}\right]](https://tex.z-dn.net/?f=%5Cleft%5B%5Cbegin%7Barray%7D%7Bccc%7D3%26-5%20%20%26%7C12%5C%5C4%26-2%20%20%26%7C15%5C%5C%5Cend%7Barray%7D%5Cright%5D)
this is the matrix of the system of equations
2 hours = 120 minutes. Divide 120 by 2, which is 40. So she has 40 minutes for each assignment
Answer:
Step-by-step explanation:
In order to find the horizontal distance the ball travels, we need to know first how long it took to hit the ground. We will find that time in the y-dimension, and then use that time in the x-dimension, which is the dimension in question when we talk about horizontal distance. Here's what we know in the y-dimension:
a = -32 ft/s/s
v₀ = 0 (since the ball is being thrown straight out the window, the angle is 0 degrees, which translates to no upwards velocity at all)
Δx = -15 feet (negative because the ball lands 15 feet below the point from which it drops)
t = ?? sec.
The equation we will use is the one for displacement:
Δx =
and filling in:
which simplifies down to
so
so
t = .968 sec (That is not the correct number of sig fig's but if I use the correct number, the answer doesn't come out to be one of the choices given. So I deviate from the rules a bit here out of necessity.)
Now we use that time in the x-dimension. Here's what we know in that dimension specifically:
a = 0 (acceleration in this dimension is always 0)
v₀ = 80 ft/sec
t = .968 sec
Δx = ?? feet
We use the equation for displacement again, and filling in what we know in this dimension:
Δx =
and of course the portion of that after the plus sign goes to 0, leaving us with simply:
Δx = (80)(.968)
Δx = 77.46 feet