So, 30 is the perimeter. We are told the table is twice as long as it is wide.
So, we have think of 2 numbers, one being twice as big than the other. So, it is a rectangle The two number represents the length and the width. To find the perimeter we add all the lengths and the widths. Since the pool table is a rectangle we have two lengths and two widths.
So,
the tow numbers be 10 and 5. 5 is half of 10 and, when multiplied by 2 it is 10. So just to make sure the numbers 5 and 10 work out lets do a calculation.
So,
10+5+10+5 = 30feet. This proves that the sides are these two numbers.
Answer:
8 ones quotient
0 one remaining
Step-by-step explanation:
there is no remaining
The solution to the system of inequalities is (0.667, 5.333)
<h3>How to graph the inequalities?</h3>
The system of inequalities is given as:
y > 2x + 4
x + y ≤ 6
Next, we plot the graph of the system using a graphing tool
From the graph, both inequalities intersect at
(0.667, 5.333)
Hence, the solution to the system of inequalities is (0.667, 5.333)
Read more about system of inequalities at:
brainly.com/question/19526736
#SPJ1
Answer:
Step-by-step explanation:
Find two linear functions p(x) and q(x) such that (p (f(q(x)))) (x) = x^2 for any x is a member of R?
Let p(x)=kpx+dp and q(x)=kqx+dq than
f(q(x))=−2(kqx+dq)2+3(kqx+dq)−7=−2(kqx)2−4kqx−2d2q+3kqx+3dq−7=−2(kqx)2−kqx−2d2q+3dq−7
p(f(q(x))=−2kp(kqx)2−kpkqx−2kpd2p+3kpdq−7
(p(f(q(x)))(x)=−2kpk2qx3−kpkqx2−x(2kpd2p−3kpdq+7)
So you want:
−2kpk2q=0
and
kpkq=−1
and
2kpd2p−3kpdq+7=0
Now I amfraid this doesn’t work as −2kpk2q=0 that either kp or kq is zero but than their product can’t be anything but 0 not −1 .
Answer: there are no such linear functions.
Answer: 2/3
Step-by-step explanation: convert to same unit. 45/60, 48/60, 40/60
40/60<45/60<48/60
so 2/3 is least