\left[x _{4}\right] = \left[ \frac{ - \left( -1\right) ^{\frac{3}{4}}\,\sqrt[4]{\left( 20 - 21\,z^{2}\right) }}{\sqrt[4]{4}}\right][x4]=[4√4−(−1)434√(20−21z2)]
I hope helping with u
L=W+12
2L+2W=48
2(W+12)+2W=48
2W+24+2W=48
4W=48-24
4W=24
W=24/4
W=6 ANS. FOR THE WIDTH.
L=6+12=18 ANS. FOR THE LENGTH.
PROOF:
2*18+2*6=48
36+12=48
48=48
Hope this helps:)
Answer:
24
Explanation:
(23+32)-(3×4)-(52-5)+(7×4)
(55)-(12)-(47)+(28)
- 55-12=43
- -47+28= -19
- 43-19=24
Answer:
The final answer is 16.
Gd luck with your work! :)
Answer:
<u>The simplest radical form of this mathematical expression is - 3√3</u>
Step-by-step explanation:
1. Let's write in a mathematical expression the information given:
-4 the square root of 12 + the square root of 75
-4 (√12) + √75
-4 (√4 * 3) + (√25 * 3) (12 = 4 * 3 and 75 = 25 * 3)
-4 (2 √3) + 5 √3
-8 √3 + 5√3
- 3 √3
The result is- 3 square root of 3.
<u>The simplest radical form of this mathematical expression is - 3√3</u>