Viscosity measurements are used in the food industry to maximize production efficiency and cost effectiveness. It affects the rate at which a product travels through a pipe, how long it takes to set or dry, and the time it takes to dispense the fluid into packaging.
What this is??????????????????
<span>The </span>abundance of a chemical element<span> is a measure of the </span>occurrence<span> of the </span>element<span> relative to all other elements in a given environment. Abundance is measured in one of three ways: by the </span>mass-fraction<span> (the same as weight fraction); by the </span>mole-fraction<span> (fraction of atoms by numerical count, or sometimes fraction of molecules in gases); or by the </span>volume-fraction<span>. Volume-fraction is a common abundance measure in mixed gases such as planetary atmospheres, and is similar in value to molecular mole-fraction for gas mixtures at relatively low densities and pressures, and </span>ideal gas<span> mixtures. Most abundance values in this article are given as mass-fractions.
</span>
Answer:
D= 5 g/L
Explanation:
M= D x Vm
M is the molar mass = 112g/mol
D is the density
Vm is the molar volume whuch is 22.4L at STP
now substitute;
112 = D x 22.4
D= 112\22.4
D= 5 g/L
Answer is 355 grams.
Explanation:
Given the molecular weights:
M
r
N
a
O
H
=
40
g
m
o
l
M
r
N
a
2
S
O
4
=
142
g
m
o
l
The analogy of the moles will be held constant:
n
N
a
O
H
n
N
a
2
S
O
4
=
2
1
n
N
a
O
H
n
N
a
2
S
O
4
=
2
For each one, substitute:
n
=
m
M
r
Therefore:
n
N
a
O
H
n
N
a
2
S
O
4
=
2
m
N
a
O
H
M
r
N
a
O
H
m
N
a
2
S
O
4
M
r
N
a
2
S
O
4
=
2
200
40
x
142
=
2
200
⋅
142
40
x
=
2
200
⋅
142
=
2
⋅
40
x
x
=
200
⋅
142
2
⋅
40
=
100
⋅
142
40
=
10
⋅
142
4
=
1420
4
=
=
710
2
=
355
g
r
a
m
s
(or just use a calculator)