(f·g)(x) is x^5 - 5x^4 + 4x³ - x² + 5x - 4
Step-by-step explanation:
- Step 1: Given, f(x) = x² - 5x + 4 and g(x) = x³ - 1 Find (f·g)(x)
(f·g)(x) = f(x)·g(x) = (x² - 5x + 4)(x³ - 1)
= x^5 - 5x^4 + 4x³ - x² + 5x - 4
= x^5 - 5x^4 + 4x³ - x² + 5x - 4
Answer:
Step-by-step explanation:
The length of the airplane = 87 feet
<u>The scale </u>
- 2in = 8ft ⇒ 1 ft = 2/8 in ⇒ 1 ft = 1/4 in
<u>The length of the model:</u>
- 87*1/4 in = 21 3/4 in = 21.75 in
Correct choice is B
Answer:
a) P(x<5)=0.
b) E(X)=15.
c) P(8<x<13)=0.3.
d) P=0.216.
e) P=1.
Step-by-step explanation:
We have the function:

a) We calculate the probability that you need less than 5 minutes to get up:

Therefore, the probability is P(x<5)=0.
b) It takes us between 10 and 20 minutes to get up. The expected value is to get up in 15 minutes.
E(X)=15.
c) We calculate the probability that you will need between 8 and 13 minutes:
![P(8\leq x\leq 13)=P(10\leqx\leq 13)\\\\P(8\leq x\leq 13)=\int_{10}^{13} f(x)\, dx\\\\P(8\leq x\leq 13)=\int_{10}^{13} \frac{1}{10} \, dx\\\\P(8\leq x\leq 13)=\frac{1}{10} \cdot [x]_{10}^{13}\\\\P(8\leq x\leq 13)=\frac{1}{10} \cdot (13-10)\\\\P(8\leq x\leq 13)=\frac{3}{10}\\\\P(8\leq x\leq 13)=0.3](https://tex.z-dn.net/?f=P%288%5Cleq%20x%5Cleq%2013%29%3DP%2810%5Cleqx%5Cleq%2013%29%5C%5C%5C%5CP%288%5Cleq%20x%5Cleq%2013%29%3D%5Cint_%7B10%7D%5E%7B13%7D%20f%28x%29%5C%2C%20dx%5C%5C%5C%5CP%288%5Cleq%20x%5Cleq%2013%29%3D%5Cint_%7B10%7D%5E%7B13%7D%20%5Cfrac%7B1%7D%7B10%7D%20%5C%2C%20dx%5C%5C%5C%5CP%288%5Cleq%20x%5Cleq%2013%29%3D%5Cfrac%7B1%7D%7B10%7D%20%5Ccdot%20%5Bx%5D_%7B10%7D%5E%7B13%7D%5C%5C%5C%5CP%288%5Cleq%20x%5Cleq%2013%29%3D%5Cfrac%7B1%7D%7B10%7D%20%5Ccdot%20%2813-10%29%5C%5C%5C%5CP%288%5Cleq%20x%5Cleq%2013%29%3D%5Cfrac%7B3%7D%7B10%7D%5C%5C%5C%5CP%288%5Cleq%20x%5Cleq%2013%29%3D0.3)
Therefore, the probability is P(8<x<13)=0.3.
d) We calculate the probability that you will be late to each of the 9:30am classes next week:
![P(x>14)=\int_{14}^{20} f(x)\, dx\\\\P(x>14)=\int_{14}^{20} \frac{1}{10} \, dx\\\\P(x>14)=\frac{1}{10} [x]_{14}^{20}\\\\P(x>14)=\frac{6}{10}\\\\P(x>14)=0.6](https://tex.z-dn.net/?f=P%28x%3E14%29%3D%5Cint_%7B14%7D%5E%7B20%7D%20f%28x%29%5C%2C%20dx%5C%5C%5C%5CP%28x%3E14%29%3D%5Cint_%7B14%7D%5E%7B20%7D%20%5Cfrac%7B1%7D%7B10%7D%20%5C%2C%20dx%5C%5C%5C%5CP%28x%3E14%29%3D%5Cfrac%7B1%7D%7B10%7D%20%5Bx%5D_%7B14%7D%5E%7B20%7D%5C%5C%5C%5CP%28x%3E14%29%3D%5Cfrac%7B6%7D%7B10%7D%5C%5C%5C%5CP%28x%3E14%29%3D0.6)
You have 9:30am classes three times a week. So, we get:

Therefore, the probability is P=0.216.
e) We calculate the probability that you are late to at least one 9am class next week:
![P(x>9.5)=\int_{10}^{20} f(x)\, dx\\\\P(x>9.5)=\int_{10}^{20} \frac{1}{10} \, dx\\\\P(x>9.5)=\frac{1}{10} [x]_{10}^{20}\\\\P(x>9.5)=1](https://tex.z-dn.net/?f=P%28x%3E9.5%29%3D%5Cint_%7B10%7D%5E%7B20%7D%20f%28x%29%5C%2C%20dx%5C%5C%5C%5CP%28x%3E9.5%29%3D%5Cint_%7B10%7D%5E%7B20%7D%20%5Cfrac%7B1%7D%7B10%7D%20%5C%2C%20dx%5C%5C%5C%5CP%28x%3E9.5%29%3D%5Cfrac%7B1%7D%7B10%7D%20%5Bx%5D_%7B10%7D%5E%7B20%7D%5C%5C%5C%5CP%28x%3E9.5%29%3D1)
Therefore, the probability is P=1.
Answer:
ahhh you didnt have to !!
Step-by-step explanation:
thank you so much, ill do the same!! check my page for a question w free brainliest
Solution: The test score that the teacher should expect from a student who did not attend her course is 37.
<u>Explanation:</u>
The teacher's equation for the line of best fit is 
We know the equation for the line of the best fit is:

Where:
is slope of the equation. It represents the rate of change in y as one unit change in x.
is the intercept. It represents the expected mean value of y when all x=0.
Therefore, in the given teacher's equation, the slope is 0.7 and intercept is 37.
Here the intercept means the average score of student who who did not attend her course.
Therefore, the test score that the teacher should expect from a student who did not attend her course is 37.