1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
antoniya [11.8K]
3 years ago
13

Simplify. Rewrite the expression in the form 4n. 49​

Mathematics
2 answers:
Slav-nsk [51]3 years ago
8 0

Answer:11^3

Step-by-step explanation:

babunello [35]3 years ago
7 0

Answer:

easy bro 4/49

Step-by-step explanation:

that is the lowest it can go :)

You might be interested in
Can someone please help me with this ty
trapecia [35]

Answer:

92 degrees

Step-by-step explanation:

The sum of the exterior angles will be 360.  

67 x 4 = 268.  That means that the last angles must be 92 (360 - 268)

5 0
2 years ago
Arun has captured many yellow-spotted salamanders. He weights each and then counts the number of yellow spots on its back
vichka [17]

Answer:

B

Step-by-step explanation:

This is a positive anotation.

Hope this helps have a good day!

7 0
3 years ago
Read 2 more answers
Quadratic equation : 5w(2)-3w-2=0
algol13
5w²-3w-2=0
5w²-5w+2w-2=0
5w(w-1)+2(w-1)=0
(5w+2)(w-1)=0
either w= -2/5 or w=1
4 0
4 years ago
Read 2 more answers
Hi, how do we do this question?​
Nutka1998 [239]

Answer:

\displaystyle \int {\frac{2x}{3x + 1}} \, dx = \frac{-2(ln|3x + 1| - 3x)}{9} + C

General Formulas and Concepts:

<u>Algebra I</u>

  • Terms/Coefficients
  • Factoring

<u>Algebra II</u>

  • Polynomial Long Division

<u>Calculus</u>

Differentiation

  • Derivatives
  • Derivative Notation

Derivative Property [Multiplied Constant]:                                                           \displaystyle \frac{d}{dx} [cf(x)] = c \cdot f'(x)

Derivative Property [Addition/Subtraction]:                                                         \displaystyle \frac{d}{dx}[f(x) + g(x)] = \frac{d}{dx}[f(x)] + \frac{d}{dx}[g(x)]  

Basic Power Rule:

  1. f(x) = cxⁿ
  2. f’(x) = c·nxⁿ⁻¹

Integration

  • Integrals
  • Integration Constant C
  • Indefinite Integrals

Integration Rule [Reverse Power Rule]:                                                               \displaystyle \int {x^n} \, dx = \frac{x^{n + 1}}{n + 1} + C

Integration Property [Multiplied Constant]:                                                         \displaystyle \int {cf(x)} \, dx = c \int {f(x)} \, dx

Integration Property [Addition/Subtraction]:                                                       \displaystyle \int {[f(x) \pm g(x)]} \, dx = \int {f(x)} \, dx \pm \int {g(x)} \, dx

Logarithmic Integration

U-Substitution

Step-by-step explanation:

*Note:

You could use u-solve instead of rewriting the integrand to integrate this integral.

<u>Step 1: Define</u>

<em>Identify</em>

\displaystyle \int {\frac{2x}{3x + 1}} \, dx

<u>Step 2: Integrate Pt. 1</u>

  1. [Integrand] Rewrite [Polynomial Long Division (See Attachment)]:           \displaystyle \int {\frac{2x}{3x + 1}} \, dx = \int {\bigg( \frac{2}{3} - \frac{2}{3(3x + 1)} \bigg)} \, dx
  2. [Integral] Rewrite [Integration Property - Addition/Subtraction]:               \displaystyle \int {\frac{2x}{3x + 1}} \, dx = \int {\frac{2}{3}} \, dx - \int {\frac{2}{3(3x + 1)}} \, dx
  3. [Integrals] Rewrite [Integration Property - Multiplied Constant]:               \displaystyle \int {\frac{2x}{3x + 1}} \, dx = \frac{2}{3}\int {} \, dx - \frac{2}{3}\int {\frac{1}{3x + 1}} \, dx
  4. [1st Integral] Reverse Power Rule:                                                               \displaystyle \int {\frac{2x}{3x + 1}} \, dx = \frac{2}{3}x - \frac{2}{3}\int {\frac{1}{3x + 1}} \, dx

<u>Step 3: Integrate Pt. 2</u>

<em>Identify variables for u-substitution.</em>

  1. Set <em>u</em>:                                                                                                             \displaystyle u = 3x + 1
  2. [<em>u</em>] Differentiate [Basic Power Rule]:                                                             \displaystyle du = 3 \ dx

<u>Step 4: Integrate Pt. 3</u>

  1. [Integral] Rewrite [Integration Property - Multiplied Constant]:                 \displaystyle \int {\frac{2x}{3x + 1}} \, dx = \frac{2}{3}x - \frac{2}{9}\int {\frac{3}{3x + 1}} \, dx
  2. [Integral] U-Substitution:                                                                               \displaystyle \int {\frac{2x}{3x + 1}} \, dx = \frac{2}{3}x - \frac{2}{9}\int {\frac{1}{u}} \, du
  3. [Integral] Logarithmic Integration:                                                               \displaystyle \int {\frac{2x}{3x + 1}} \, dx = \frac{2}{3}x - \frac{2}{9}ln|u| + C
  4. Back-Substitute:                                                                                            \displaystyle \int {\frac{2x}{3x + 1}} \, dx = \frac{2}{3}x - \frac{2}{9}ln|3x + 1| + C
  5. Factor:                                                                                                           \displaystyle \int {\frac{2x}{3x + 1}} \, dx = -2 \bigg( \frac{1}{9}ln|3x + 1| - \frac{x}{3}  \bigg) + C
  6. Rewrite:                                                                                                         \displaystyle \int {\frac{2x}{3x + 1}} \, dx = \frac{-2(ln|3x + 1| - 3x)}{9} + C

Topic: AP Calculus AB/BC (Calculus I/I + II)

Unit: Integration

Book: College Calculus 10e

8 0
3 years ago
Brayden can type 270 words in 3<br> minutes. How many words per<br> minute can Brayden type?
Salsk061 [2.6K]

Answer:  90 words per minute

====================================================

Work Shown:

270 words : 3 minutes

270/3 words : 3/3 minutes ..... divide both parts by 3

90 words : 1 minute

Brayden can type 90 words per minute (wpm).

4 0
3 years ago
Other questions:
  • Federal and state laws provide rules on the lowest hourly rate that Federal and state laws provide rules on the lowest hourly ra
    8·2 answers
  • Find the average rate of change of the function over the given interval.. h(t) = cot t, intervals given [pi/4, (3pi)/4]. I've go
    9·1 answer
  • In the figure below, ∠APE and ∠EPD are congruent.
    10·1 answer
  • Question 16 options:
    5·2 answers
  • A) -10 &lt; y &lt; 10 <br><br> B) -2 &lt; y &lt; 7 <br><br> C) { -2, 1, 4, 7 } <br><br> D) { -2, 7 }
    10·1 answer
  • Select all that apply.
    7·1 answer
  • Is it congruent or not ? Remember that the diagram may not be drawn to scale . justify your conclusion.
    5·1 answer
  • Could use some help on 22
    14·1 answer
  • An engineer wants to determine how the weight of a​ gas-powered car,​ x, affects gas​ mileage, y. The accompanying data represen
    6·1 answer
  • Simplify 4x5p:)<br> thanks whoever answers receives points
    10·2 answers
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!