1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
jenyasd209 [6]
3 years ago
7

1.6 divided by 4 is ? Find equation

Mathematics
2 answers:
lara [203]3 years ago
7 0

Answer:

0.4

Step-by-step explanation:

i just looked it up on a calculator. brainliest please??

Sveta_85 [38]3 years ago
3 0

Answer:

o.4

Step-by-step explanation:

You might be interested in
How would you describe the correlation in the data? Explain your reasoning. (2 points).
ANTONII [103]

Answer:

Hi

Step-by-step What is a linear function in the form y= mx + b for the line passing through (4.5, -4.25) with y-intercept 2.5 yup help pleade

5 0
3 years ago
If f(x) = 2x - 9, which of the following are correct?
matrenka [14]
F(-1) = -11
f(0) = -9
f(3) = -3
3 0
4 years ago
For health reasons, Sarah needs to limit her fat intake to 25% of the total calories consumed in a day. If the fat intake is 550
8090 [49]
550 * 4 = 2200

Hope this helps !
4 0
3 years ago
Read 2 more answers
If -y-2x^3=Y^2 then find D^2y/dx^2 at the point (-1,-2) in simplest form
algol13

Answer:

\frac{d^2y}{dx^2} = \frac{-4}{3}

General Formulas and Concepts:

<u>Pre-Algebra</u>

Order of Operations: BPEMDAS

  1. Brackets
  2. Parenthesis
  3. Exponents
  4. Multiplication
  5. Division
  6. Addition
  7. Subtraction
  • Left to Right

<u>Algebra I</u>

  • Factoring

<u>Calculus</u>

Implicit Differentiation

The derivative of a constant is equal to 0

Basic Power Rule:

  • f(x) = cxⁿ
  • f’(x) = c·nxⁿ⁻¹

Product Rule: \frac{d}{dx} [f(x)g(x)]=f'(x)g(x) + g'(x)f(x)

Chain Rule: \frac{d}{dx}[f(g(x))] =f'(g(x)) \cdot g'(x)

Quotient Rule: \frac{d}{dx} [\frac{f(x)}{g(x)} ]=\frac{g(x)f'(x)-g'(x)f(x)}{g^2(x)}

Step-by-step explanation:

<u>Step 1: Define</u>

-y - 2x³ = y²

Rate of change of tangent line at point (-1, -2)

<u>Step 2: Differentiate Pt. 1</u>

<em>Find 1st Derivative</em>

  1. Implicit Differentiation [Basic Power Rule]:                                                  -y'-6x^2=2yy'
  2. [Algebra] Isolate <em>y'</em> terms:                                                                              -6x^2=2yy'+y'
  3. [Algebra] Factor <em>y'</em>:                                                                                       -6x^2=y'(2y+1)
  4. [Algebra] Isolate <em>y'</em>:                                                                                         \frac{-6x^2}{(2y+1)}=y'
  5. [Algebra] Rewrite:                                                                                           y' = \frac{-6x^2}{(2y+1)}

<u>Step 3: Differentiate Pt. 2</u>

<em>Find 2nd Derivative</em>

  1. Differentiate [Quotient Rule/Basic Power Rule]:                                          y'' = \frac{-12x(2y+1)+6x^2(2y')}{(2y+1)^2}
  2. [Derivative] Simplify:                                                                                       y'' = \frac{-24xy-12x+12x^2y'}{(2y+1)^2}
  3. [Derivative] Back-Substitute <em>y'</em>:                                                                     y'' = \frac{-24xy-12x+12x^2(\frac{-6x^2}{2y+1} )}{(2y+1)^2}
  4. [Derivative] Simplify:                                                                                      y'' = \frac{-24xy-12x-\frac{72x^4}{2y+1} }{(2y+1)^2}

<u>Step 4: Find Slope at Given Point</u>

  1. [Algebra] Substitute in <em>x</em> and <em>y</em>:                                                                     y''(-1,-2) = \frac{-24(-1)(-2)-12(-1)-\frac{72(-1)^4}{2(-2)+1} }{(2(-2)+1)^2}
  2. [Pre-Algebra] Exponents:                                                                                      y''(-1,-2) = \frac{-24(-1)(-2)-12(-1)-\frac{72(1)}{2(-2)+1} }{(2(-2)+1)^2}
  3. [Pre-Algebra] Multiply:                                                                                   y''(-1,-2) = \frac{-48+12-\frac{72}{-4+1} }{(-4+1)^2}
  4. [Pre-Algebra] Add:                                                                                         y''(-1,-2) = \frac{-36-\frac{72}{-3} }{(-3)^2}
  5. [Pre-Algebra] Exponents:                                                                               y''(-1,-2) = \frac{-36-\frac{72}{-3} }{9}
  6. [Pre-Algebra] Divide:                                                                                      y''(-1,-2) = \frac{-36+24 }{9}
  7. [Pre-Algebra] Add:                                                                                          y''(-1,-2) = \frac{-12}{9}
  8. [Pre-Algebra] Simplify:                                                                                    y''(-1,-2) = \frac{-4}{3}
6 0
3 years ago
Can someone help me?
sattari [20]

Answer:

176 cubic feet I think

Step-by-step explanation:

352 / 2 = 176

7 0
3 years ago
Read 2 more answers
Other questions:
  • 7x+2y=4 <br> y=x+1<br> Solve the system of equations.<br> (1/3,4/3)<br> (2/9,11,9)<br> no solution
    5·2 answers
  • 5.
    8·1 answer
  • What is the perimeter of the figure?
    5·1 answer
  • You put $600 in a savings account. The account earns 6% simple interest per year. a. What is the interest earned after 10 years?
    6·1 answer
  • What is the average rate of change of f(x), represented by the graph, over the interval [0, 2]?
    10·2 answers
  • Evaluate −8 + 10 × 4 ÷ (−2)
    14·2 answers
  • The graph below shows a scatter plot and a linear model
    10·2 answers
  • I NEED HELP UNDER 10 MINS PLEASE
    6·1 answer
  • at a certain fast-food restaurant, the volume of a large soda is 35% greater than the volume of a small soda. if the volume of t
    14·1 answer
  • Hello, i need some help, thanks &lt;3​
    14·2 answers
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!