The answer for this will be 2
Answer: The correct option is (B) 24 : 25.
Step-by-step explanation: Given that the perimeter of square region S and the perimeter of rectangular region R are equal and the sides of R are in the ratio 2 : 3.
We are to find the ratio of the area of R to the area of S.
Let 2x, 3x be the sides of rectangle R and y be the side of square S.
Then, according to the given information, we have

Therefore, the ratio of the area of R to the area of S is
![\dfrac{2x\times3x}{y\times y}\\\\\\=\dfrac{5x^2}{y^2}\\\\\\=6\left(\dfrac{x}{y}\right)^2\\\\\\=6\times\left(\dfrac{2}{5}\right)^2~~~~~~~~~~~[\textup{Using equation (i)}]\\\\\\=\dfrac{24}{25}\\\\=24:25.](https://tex.z-dn.net/?f=%5Cdfrac%7B2x%5Ctimes3x%7D%7By%5Ctimes%20y%7D%5C%5C%5C%5C%5C%5C%3D%5Cdfrac%7B5x%5E2%7D%7By%5E2%7D%5C%5C%5C%5C%5C%5C%3D6%5Cleft%28%5Cdfrac%7Bx%7D%7By%7D%5Cright%29%5E2%5C%5C%5C%5C%5C%5C%3D6%5Ctimes%5Cleft%28%5Cdfrac%7B2%7D%7B5%7D%5Cright%29%5E2~~~~~~~~~~~%5B%5Ctextup%7BUsing%20equation%20%28i%29%7D%5D%5C%5C%5C%5C%5C%5C%3D%5Cdfrac%7B24%7D%7B25%7D%5C%5C%5C%5C%3D24%3A25.)
Thus, the required ratio of the area of R to the area of S is 24 : 25.
Option (B) is CORRECT.
The equation formula of the circle is (x-h)^2 + (y-k)^2 = r^2
where (h,k) the point of the center of the circle
and (r) is the radius of the circle
so if the center of the circle = (-2,-4)
by subs. in the formula we get (x-(-2))^2 + (y-(-4))^2 = r^2
then the equation will be (x+2)^2 + (y+4)^2 = r^2
now we want to define the radius of the circle r
since point (3,8) lay on the circle so we can
then subs. in the equation to get the radius
(x+2)^2 +(y+4)^2 = r^2
(3+2)^2 +(8+4)^2 = r^2
25 + 144 = r^2
r^2 = 169
r= 13
the radius of the circle is 13
so by subs in the equation we get
(x+2)^2 + (y+4)^2 = 169
so it is the first answer in the choices
Answer:
i think 65 but if not then it is D impossible
Step-by-step explanation:
hope that helps
and that i wasn't to late
Answer:
Average rate of change 
Step-by-step explanation:
Given function is
and we need to find average rate of change of the function from
.
Average rate of change 
So,

Average rate of change

Hence, average rate of change of the function
over the intervel
is
.