Answer:
<em>Exceptions to Mendel's principles:
</em>
Does exceptions mean that Mendel was "wrong"? The answer is "NO". It means that we know more today about diseases, genes, and heredity than compared to what he expalined 150 years ago. Here I have summerized the exceptions with examples:
<em>Incomplete dominance</em>: When an organism is heterozygous for a trait and both genes are expressed but not completely.
<em>Example</em><em>:</em> SnapDragon Flowers
<em>Codominance</em>: When 2 different alleles are present and both alleles are expressed.
<em>Example</em>: Black Feathers + Whites feathers --> Black and white speckled feathers
<em>Multiple alleles</em>: Three or more alternative forms of a gene (alleles) that can occupy the same locus.
Example: Bloodtype
<em>Polygenic traits</em>: more than one gene controls a particular phenotype
Example: human height, Hair color, weight, and eye, hair and skin color.
The plant is the organism that uses the sun’s energy and make it available to other organisms
Explanation:
In digestion, the liver is involved in processing the nutrients that are absorbed from the small intestine. It helps in the digestion of fat.
On the other hand, the liver maintains homeostasis by serving an important function in the excretory system.
Answer:
Mutualism
Explanation:
When the two different population species interact in such a manner that it is beneficial to each other, then this form of interaction is called mutualism.
Answer:
Choosing protein as macromolecule.
Explanation:
The given environmental changes can lead to structural changes in protein as well:
pH - Several amino acids contain sidechains with practical gatherings that can promptly pick up or lose a proton. Changes in pH would prompt an adjustment in the charge of the amino acids, prompting charge-charge attraction or repilsion between non-interfacing amino parts.
Temperature - High temperatures can prompt protein denaturation. Warmth can upset hydrogen bonding and hydrophobic interactions.
Reduction or oxidation Environment - Some tertiary structure of protein folding is held by disulfide linkages. Reducing agent will lead to unfolding by introducing itself to break disulfide bonds.
Effect of these change: Sequence of amino acid and structure of protein molecule form determines function, any slight change to a protein's structure may result in the protein to become dysfunctional or produce different product.