Answer:
<em>Hox </em>Gene
Explanation:
First, you're question is very vital, there are many ways in classifying along with identifying all living organisms that includes; morphological analysis, molecular systematics (studying the similarities and differences of the genetic data such in the sequences of DNA, RNA, and rRNA ), homology, cladistics, etc. based on phylogenetic tree, which the study of the evolutionary among various species.
But through it said that all living organisms shared one common ancestor. However, what makes them different from one to another is the homeotic genes that called <em>Hox </em>Genes; which specify the fate of a particular segment or region of the body, meaning the number and arrangements of the<em> Hox</em> genes varies considerably among different types of animals.
For instance, Sponges have at least one homologous to<em> Hox</em> genes, also insects have nine or more <em>Hox </em>genes resulting in multiple <em>Hox </em>genes occur in a cluster in which the genes are close to each other along a chromosome. Therefore, increases in the number of<em> Hox</em> genes have been instrumental in the evolution of many animals species with greater complexity in body structure.
Overall, more <em>Hox</em> genes, more complexity in body structure resulting in the differences of their morphological structure.
Hope that answered your question!
Answer:
Explanation:
Transfer RNA (tRNA) precursors undergo endoribonucleolytic processing of their 5' and 3' ends. 5' cleavage of the precursor transcript is performed by ribonuclease P (RNase P). While in most organisms RNase P is a ribonucleoprotein that harbors a catalytically active RNA component, human mitochondria and the chloroplasts (plastids) and mitochondria
Answer:Atoms of nonmetals have a tendency to gain or share electrons when they react.
Explanation: Non-metals are elements that gain electron to form negatively charged ions known as anions.
When non-metals react, they either gain/accept electron from a metal atom or share electron with another non-metal atom. When a non-metal accepts an electron from a metal atom, the type of bond formed is called ionic or electrovalent bond. In electrovalent bond, the metal atom transfers its valence electrons to the non-metal atom so that both attain a stable octet or duplet structure.
When a non-metal shares electron with another non-metal atom, the type of bond formed is known as covalent bond. In covalent bond, the two non-metal atoms share a pair of electron, each atom donating one electron to form a pair.