1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
vichka [17]
3 years ago
5

Identify which table represents a linear function. Hint: there are a few

Mathematics
2 answers:
densk [106]3 years ago
6 0
15
I got the MOVES like swaggerrrr oooooooooooo
Mademuasel [1]3 years ago
5 0

Answer:

option 2

Step-by-step explanation:

You might be interested in
Evaluate the given integral by changing to polar coordinates. 8xy dA D , where D is the disk with center the origin and radius 9
BabaBlast [244]

Answer:

0

Step-by-step explanation:

∫∫8xydA

converting to polar coordinates, x = rcosθ and y = rsinθ and dA = rdrdθ.

So,

∫∫8xydA = ∫∫8(rcosθ)(rsinθ)rdrdθ = ∫∫8r²(cosθsinθ)rdrdθ = ∫∫8r³(cosθsinθ)drdθ

So we integrate r from 0 to 9 and θ from 0 to 2π.

∫∫8r³(cosθsinθ)drdθ = 8∫[∫r³dr](cosθsinθ)dθ

= 8∫[r⁴/4]₀⁹(cosθsinθ)dθ

= 8∫[9⁴/4 - 0⁴/4](cosθsinθ)dθ

= 8[6561/4]∫(cosθsinθ)dθ

= 13122∫(cosθsinθ)dθ

Since sin2θ = 2sinθcosθ, sinθcosθ = (sin2θ)/2

Substituting this we have

13122∫(cosθsinθ)dθ = 13122∫(1/2)(sin2θ)dθ

= 13122/2[-cos2θ]/2 from 0 to 2π

13122/2[-cos2θ]/2 = 13122/4[-cos2(2π) - cos2(0)]

= -13122/4[cos4π - cos(0)]

= -13122/4[1 - 1]

= -13122/4 × 0

= 0

5 0
3 years ago
<img src="https://tex.z-dn.net/?f=%5Cleft%20%5C%7B%20%7B%7Bx%2By%3D1%7D%20%5Catop%20%7Bx-2y%3D4%7D%7D%20%5Cright.%20%5C%5C%5Clef
brilliants [131]

Answer:

<em>(a) x=2, y=-1</em>

<em>(b)  x=2, y=2</em>

<em>(c)</em> \displaystyle x=\frac{5}{2}, y=\frac{5}{4}

<em>(d) x=-2, y=-7</em>

Step-by-step explanation:

<u>Cramer's Rule</u>

It's a predetermined sequence of steps to solve a system of equations. It's a preferred technique to be implemented in automatic digital solutions because it's easy to structure and generalize.

It uses the concept of determinants, as explained below. Suppose we have a 2x2 system of equations like:

\displaystyle \left \{ {{ax+by=p} \atop {cx+dy=q}} \right.

We call the determinant of the system

\Delta=\begin{vmatrix}a &b \\c  &d \end{vmatrix}

We also define:

\Delta_x=\begin{vmatrix}p &b \\q  &d \end{vmatrix}

And

\Delta_y=\begin{vmatrix}a &p \\c  &q \end{vmatrix}

The solution for x and y is

\displaystyle x=\frac{\Delta_x}{\Delta}

\displaystyle y=\frac{\Delta_y}{\Delta}

(a) The system to solve is

\displaystyle \left \{ {{x+y=1} \atop {x-2y=4}} \right.

Calculating:

\Delta=\begin{vmatrix}1 &1 \\1  &-2 \end{vmatrix}=-2-1=-3

\Delta_x=\begin{vmatrix}1 &1 \\4  &-2 \end{vmatrix}=-2-4=-6

\Delta_y=\begin{vmatrix}1 &1 \\1  &4 \end{vmatrix}=4-3=3

\displaystyle x=\frac{\Delta_x}{\Delta}=\frac{-6}{-3}=2

\displaystyle y=\frac{\Delta_y}{\Delta}=\frac{3}{-3}=-1

The solution is x=2, y=-1

(b) The system to solve is

\displaystyle \left \{ {{4x-y=6} \atop {x-y=0}} \right.

Calculating:

\Delta=\begin{vmatrix}4 &-1 \\1  &-1 \end{vmatrix}=-4+1=-3

\Delta_x=\begin{vmatrix}6 &-1 \\0  &-1 \end{vmatrix}=-6-0=-6

\Delta_y=\begin{vmatrix}4 &6 \\1  &0 \end{vmatrix}=0-6=-6

\displaystyle x=\frac{\Delta_x}{\Delta}=\frac{-6}{-3}=2

\displaystyle y=\frac{\Delta_y}{\Delta}=\frac{-6}{-3}=2

The solution is x=2, y=2

(c) The system to solve is

\displaystyle \left \{ {{-x+2y=0} \atop {x+2y=5}} \right.

Calculating:

\Delta=\begin{vmatrix}-1 &2 \\1  &2 \end{vmatrix}=-2-2=-4

\Delta_x=\begin{vmatrix}0 &2 \\5  &2 \end{vmatrix}=0-10=-10

\Delta_y=\begin{vmatrix}-1 &0 \\1  &5 \end{vmatrix}=-5-0=-5

\displaystyle x=\frac{\Delta_x}{\Delta}=\frac{-10}{-4}=\frac{5}{2}

\displaystyle y=\frac{\Delta_y}{\Delta}=\frac{-5}{-4}=\frac{5}{4}

The solution is

\displaystyle x=\frac{5}{2}, y=\frac{5}{4}

(d) The system to solve is

\displaystyle \left \{ {{6x-y=-5} \atop {4x-2y=6}} \right.

Calculating:

\Delta=\begin{vmatrix}6 &-1 \\4  &-2 \end{vmatrix}=-12+4=-8

\Delta_x=\begin{vmatrix}-5 &-1 \\6  &-2 \end{vmatrix}=10+6=16

\Delta_y=\begin{vmatrix}6 &-5 \\4  &6 \end{vmatrix}=36+20=56

\displaystyle x=\frac{\Delta_x}{\Delta}=\frac{16}{-8}=-2

\displaystyle y=\frac{\Delta_y}{\Delta}=\frac{56}{-8}=-7

The solution is x=-2, y=-7

4 0
3 years ago
If someone worked 10 :00 to 1:00 how many hours would they have worked
nirvana33 [79]
10 to 11 = 1 hr
11 to 12 = 1 hr
12 to 1 = 1 hr

total  = 3 hours
7 0
3 years ago
Read 2 more answers
Uhh yeahh don't know lol ...
Ratling [72]

Answer:

for first blank its 1/3 and second blank is 5

Step-by-step explanation:

4 0
3 years ago
Read 2 more answers
I need help on this math problem.
MrMuchimi

Answer:

its A.

Step-by-step explanation:

8 0
4 years ago
Read 2 more answers
Other questions:
  • Convert. If necessary, round to the nearest tenth. (Recall: 1.06 qt. ≈ 1 L) 15 L qt. a. 15.9 c. 13.4 b. 159 d. 134
    7·1 answer
  • Part 3
    11·1 answer
  • A teacher wants to give 3 markers to
    15·2 answers
  • Please, help me on this question, guys! I know the answer for (a) so I'll write down, too. For (b) I tried "$89,000 because that
    6·1 answer
  • What is the magnitude of a?<br> 4<br> −4<br> 3<br> −3
    15·2 answers
  • HELP WITH THIS QUESTION??
    7·1 answer
  • In deciding the best medium to tell a story, which step is first?(1 point)
    12·1 answer
  • What is the slope of the linear function
    6·1 answer
  • PLEASE HELP URGENT!!!! Can someone plss help me with these!!
    10·1 answer
  • PLEASE helpppppppp!!!!!!
    8·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!