I hope this helps you find the answer you're looking for
Swapping rows alters the sign of the determinant:
![\begin{vmatrix} x & y & z \\ -8 & 2 & -12 \\ u & v & w \end{vmatrix} = - \begin{vmatrix} x & y & z \\ u & v & w \\ -8 & 2 & -12 \end{vmatrix}](https://tex.z-dn.net/?f=%5Cbegin%7Bvmatrix%7D%20x%20%26%20y%20%26%20z%20%5C%5C%20-8%20%26%202%20%26%20-12%20%5C%5C%20u%20%26%20v%20%26%20w%20%5Cend%7Bvmatrix%7D%20%3D%20-%20%5Cbegin%7Bvmatrix%7D%20x%20%26%20y%20%26%20z%20%5C%5C%20u%20%26%20v%20%26%20w%20%5C%5C%20-8%20%26%202%20%26%20-12%20%5Cend%7Bvmatrix%7D)
Multiplying a single row by a scalar scales the determinant by the same amount:
![\begin{vmatrix} x & y & z \\ u & v & w \\ -8 & 2 & -12 \end{vmatrix} = -2 \begin{vmatrix} x & y & z \\ u & v & w \\ 4 & -1 & 6 \end{vmatrix}](https://tex.z-dn.net/?f=%5Cbegin%7Bvmatrix%7D%20x%20%26%20y%20%26%20z%20%5C%5C%20u%20%26%20v%20%26%20w%20%5C%5C%20-8%20%26%202%20%26%20-12%20%5Cend%7Bvmatrix%7D%20%3D%20-2%20%5Cbegin%7Bvmatrix%7D%20x%20%26%20y%20%26%20z%20%5C%5C%20u%20%26%20v%20%26%20w%20%5C%5C%204%20%26%20-1%20%26%206%20%5Cend%7Bvmatrix%7D)
Then
![\begin{vmatrix} x & y & z \\ -8 & 2 & -12 \\ u & v & w \end{vmatrix} = -(-2) \begin{vmatrix} x & y & z \\ u & v & w \\ 4 & -1 & 6 \end{vmatrix} = 2\times(-6) = \boxed{-12}](https://tex.z-dn.net/?f=%5Cbegin%7Bvmatrix%7D%20x%20%26%20y%20%26%20z%20%5C%5C%20-8%20%26%202%20%26%20-12%20%5C%5C%20u%20%26%20v%20%26%20w%20%5Cend%7Bvmatrix%7D%20%3D%20-%28-2%29%20%5Cbegin%7Bvmatrix%7D%20x%20%26%20y%20%26%20z%20%5C%5C%20u%20%26%20v%20%26%20w%20%5C%5C%204%20%26%20-1%20%26%206%20%5Cend%7Bvmatrix%7D%20%3D%202%5Ctimes%28-6%29%20%3D%20%5Cboxed%7B-12%7D)
$124.56 because if you have 63% you change it to a decimal so it is not .63 and you multiply it by 146.16 and then add the 35 you get 124.56
Answer: A
Step-by-step explanation:
because i nsaid sooooo
angles must add up to 180
so 34+62+83
but 34+62+83=179
and that is less than 180
so no it is not possible