The carbon cycle in the desert involves the plants absorbing carbon dioxide together with sunlight and water through photosynthesis to make food and carbon rich compounds. When plants die, they decompose and release carbon elements into the soil as nutrients. These nutrients are then absorbed by other sprouting plants.
Answer:
The albedo temperature for Mars and Venus are 210K and 184 K respectively.Mars albedo temperature is closer to its black body temperature such that the Venus has more albedo.Thus there is a chance that Mars would have had life in their history.
Explanation:
The albedo temperature is given as
![Te =\left [\dfrac{L(1-a)}{ (16\pi \sigma D^2}\right]^{1/4}](https://tex.z-dn.net/?f=Te%20%3D%5Cleft%20%5B%5Cdfrac%7BL%281-a%29%7D%7B%20%2816%5Cpi%20%5Csigma%20D%5E2%7D%5Cright%5D%5E%7B1%2F4%7D)
Here
L = Solar luminosity = 3.846*1026 W m-2 K-4
D = distance from Sun
σ = the Stefan-Boltzman constant = 5.6704 * 10-8 W
a is the albedo constant whose value for Mars is 0.250 while for Venus it is 0.900
So the albedo temperature is given as
Venus: 184 K
Mars: 210 K
The black body temperature is given as
![Te =\left [\dfrac{L}{ (16\pi \sigma D^2}\right]^{1/4}](https://tex.z-dn.net/?f=Te%20%3D%5Cleft%20%5B%5Cdfrac%7BL%7D%7B%20%2816%5Cpi%20%5Csigma%20D%5E2%7D%5Cright%5D%5E%7B1%2F4%7D)
By substitution of the values, the black body temperature for Venus and Mars are as
Venus: 327 K
Mars: 225 K
Mars albedo temperature is closer to its black body temperature such that the Venus has more albedo.
Thus there is a chance that Mars would have had life in their history.
The answer for this qn is D.
Australia is both a representative democracy and a constitutional monarchy.