Answer:Yes because is it in the right formula!!
Step-by-step explanation:
Answer:
A(t) = 676π(t+1)
Correct question:
A rain drop hitting a lake makes a circular ripple. Suppose the radius, in inches, grows as a function of time in minutes according to r(t)=26√(t+1), and answer the following questions. Find a function, A(t), for the area of the ripple as a function of time.
Step-by-step explanation:
The area of a circle is expressed as;
A = πr^2
Where, A = Area
r = radius
From the case above.
The radius of the ripple is a function of time
r = r(t) = 26√(t+1)
So,
A(t) = π[r(t)]^2
Substituting r(t),
A(t) = π(26√(t+1))^2
A(t) = π(676(t+1))
A(t) = 676π(t+1)
I think the answer will be B 1-9x+C=32
Answer:
Step-by-step explanation:
Trace a linha de 8cm, daí você vai dividir ela no meio, ou seja, no 4. Aí é só contar 2 cm para cada lado, que vai ser o 1, as pontas vão ser o 2. Tendeu? Daí é só marcar os pontos no -3/7(~-2,3), 1,6, 7/5(1,4), -1 e 0
Answer:
4.25 km^2
Step-by-step explanation:
Assuming this is a rectangular area
A = l*w
1.7*2.5
4.25 km^2