Answer:
Ok I'm assuming that know what??
Step-by-step explanation:
Answer: 920.3 ft
Step-by-step explanation:

Answer: Approximately 79 Percent
Step-by-step explanation:
The confidence level used in this estimation is approximately 79 percent.
Answer:

Step-by-step explanation:
To find the matrix A, took all the numeric coefficient of the variables, the first column is for x, the second column for y, the third column for z and the last column for w:
![A=\left[\begin{array}{cccc}1&1&2&2\\-7&-3&5&-8\\4&1&1&1\\3&7&-1&1\end{array}\right]](https://tex.z-dn.net/?f=A%3D%5Cleft%5B%5Cbegin%7Barray%7D%7Bcccc%7D1%261%262%262%5C%5C-7%26-3%265%26-8%5C%5C4%261%261%261%5C%5C3%267%26-1%261%5Cend%7Barray%7D%5Cright%5D)
And the vector B is formed with the solution of each equation of the system:![b=\left[\begin{array}{c}3\\-3\\6\\1\end{array}\right]](https://tex.z-dn.net/?f=b%3D%5Cleft%5B%5Cbegin%7Barray%7D%7Bc%7D3%5C%5C-3%5C%5C6%5C%5C1%5Cend%7Barray%7D%5Cright%5D)
To apply the Cramer's rule, take the matrix A and replace the column assigned to the variable that you need to solve with the vector b, in this case, that would be the second column. This new matrix is going to be called
.
![A_{2}=\left[\begin{array}{cccc}1&3&2&2\\-7&-3&5&-8\\4&6&1&1\\3&1&-1&1\end{array}\right]](https://tex.z-dn.net/?f=A_%7B2%7D%3D%5Cleft%5B%5Cbegin%7Barray%7D%7Bcccc%7D1%263%262%262%5C%5C-7%26-3%265%26-8%5C%5C4%266%261%261%5C%5C3%261%26-1%261%5Cend%7Barray%7D%5Cright%5D)
The value of y using Cramer's rule is:

Find the value of the determinant of each matrix, and divide:


y = (t x - m -s)/r
Step-by-step explanation:
Step 1 :
Given,
r y + s = t x - m
=> r y = t x - m -s
=> y = (t x - m -s)/r
Step 2 :
A) r can take any values except 0.
This is because when r = 0, the denominator becomes 0 and division by 0 is undefined
The limitation for r is r should not be equal to 0
The other variables can take any value. Hence the other variables do not have any limitation