Answer:
Is this homework? do you need me to click the link or anything??
Step 1
List all of your options as the row labels on the table, and list the factors that you need to consider as the column headings. For example, if you were buying a new laptop, factors to consider might be cost, dimensions, and hard disk size.
Step 2
Next, work your way down the columns of your table, scoring each option for each of the factors in your decision. Score each option from 0 (poor) to 5 (very good). Note that you do not have to have a different score for each option – if none of them are good for a particular factor in your decision, then all options should score 0.
Step 3
The next step is to work out the relative importance of the factors in your decision. Show these as numbers from, say, 0 to 5, where 0 means that the factor is absolutely unimportant in the final decision, and 5 means that it is very important. (It's perfectly acceptable to have factors with the same importance.)
Tip:
These values may be obvious. If they are not, then use a technique such as Paired Comparison Analysis to estimate them.
Step 4
Now multiply each of your scores from step 2 by the values for relative importance of the factor that you calculated in step 3. This will give you weighted scores for each option/factor combination.
Step 5
Finally, add up these weighted scores for each of your options. The option that scores the highest wins!
A radioactive element with a half-life of 1,000 years, and starting mass of 20 grams, will need 2,000 years to decrease to 5 grams.
Explanation:
The radioactive elements all have a specific half-life. Each element's half-life is well known, and they are used by scientists of numerous fields as they are excellent for determining the age of a particular item, be it or organic or non-organic nature. In this case, we have a radioactive element with a half-life of 1,000 years, and starting mass of 20 grams.
The half-life basically means that half of the mass of an element is lost during a particular period of time. For the element in question we need to find out how much time will be needed for it to decrease to 5 grams. In order to get to the result, we just need to add 1,000 years on every decrease of half of the mass:
20/2 = 10
10/2 = 5
So in 1,000 years, the element in question will decrease to 10 grams, and in further 1,000 years (2,000 cumulatively) it will decrease to 5 grams.
Learn more about radioactive decay brainly.com/question/9796067
#learnwithBrainly
Riches from the land such as good and silver
Ya, when school districts spend money wisely, they have better outcomes, including higher test scores, increased graduation rates, and other improved indicators of student achievement. More money also helps ensure that students have schools with better facilities and more curriculum options.