The measure of ∠BAF is 54°.
Solution:
DF and CE are intersecting lines.
m∠EAF = 72° and AB bisects ∠CAF.
∠EAF and ∠DAC are vertically opposite angles.
Vertical angle theorem:
<em>If two lines are intersecting, then vertically opposite angles are congruent.</em>
∠DAC ≅ ∠EAF
m∠DAC = 72°
<em>Sum of the adjacent angles in a straight line = 180°</em>
m∠DAE + m∠EAF = 180°
m∠DAE + 72° = 180°
Subtract 72° from both sides.
m∠DAE = 108°
∠CAF and ∠DAE are vertically opposite angles.
⇒ m∠CAF = m∠DAE
⇒ m∠CAF = 108°
AB bisects ∠CAF means ∠CAB = ∠BAF
m∠CAB + m∠BAF = 108°
m∠BAF + m∠BAF = 108°
2 m∠BAF = 108°
Divide by 2 on both sides, we get
m∠BAF = 54°
Hence the measure of ∠BAF is 54°.
<u>EXPLANATION</u><u>:</u>
Given that
sin θ = 1/2
We know that
sin 3θ = 3 sin θ - 4 sin³ θ
⇛sin 3θ = 3(1/2)-4(1/2)³
⇛sin 3θ = (3/2)-4(1/8)
⇛sin 3θ = (3/2)-(4/8)
⇛sin 3θ = (3/2)-(1/2)
⇛sin 3θ = (3-1)/2
⇛sin 3θ = 2/2
⇛sin 3θ = 1
and
cos 2θ = cos² θ - sin² θ
⇛cos 2θ = 1 - sin² θ - sin² θ
⇛cos 2θ = 1 - 2 sin² θ
Now,
cos 2θ = 1-2(1/2)²
⇛cos 2θ = 1-2(1/4)
⇛cos 2θ = 1-(2/4)
⇛cos 2θ = 1-(1/2)
⇛cos 2θ = (2-1)/2
⇛cos 2θ = 1/2
Now,
The value of sin 3θ /(1+cos 2θ
⇛1/{1+(1/2)}
⇛1/{(2+1)/2}
⇛1/(3/2)
⇛1×(2/3)
⇛(1×2)/3
⇛2/3
<u>Answer</u> : Hence, the req value of sin 3θ /(1+cos 2θ) is 2/3.
<u>also</u><u> read</u><u> similar</u><u> questions</u><u>:</u> If sin Θ = 2/3 and tan Θ < 0, what is the value of cos Θ?
brainly.com/question/12618768?referrer
if cos θ -sin θ =1, find θ cos θ +sin θ?
brainly.com/question/88125?referrer
Lets say that the length of a rectangle is 12 cm and the width is 5 cm, you would add 12+12+5+5 (as in the length on both length sides and the width on both sides) so the perimeter of this rectangle is: 34 cm
24x^3-40x^2. 45x-75
8x^2(3x-5). 15(3x-5)
(8x^2+15)(3x-5)