The RNA sequence comparison
I believe that the odds are strong that the off-spring would be 1/4 black, 1/2 black and white, and 1/4 white:
Bb x Bb = ¼ BB (all black); ½ Bb (black and white ) ;¼ bb (all white).
The question is incomplete, so the complete question is as follows:
A chloroplast has stopped producing ATP and NADPH. Which of the following is most likely causing this?
a.The chloroplast has used up its supply of chlorophyll molecules.
b.Electrons have stopped moving through the electron transport chain.
c.The sun has risen and the chloroplast now can make more chlorophyll.
Answer:
b.Electrons have stopped moving through the electron transport chain.
Explanation:
ATP and NADPH are produced in the light dependent reaction stage of the photosynthesis that occurs within chloroplast grana.
ATP and NADPH are produced due to the movement of electron and proton (H+) in the electron transport chain, so if the movement of electrons will stopped in the electron transport chain, the formation of ATP and NADPH will also get stop.
Hence, the correct answer is "b".
If you want to grow up a large quantity of streptomycin-resistant E. coli, you would require to pick a colony of the bacteria from the streptomycin-positive plate and allow to grow it on a streptomycin positive plate.
<h3>What is E. coli?</h3>
E. coli may be defined as a type of bacterium that is commonly present in the intestinal regions of humans and other animals, some strains of this bacterium can significantly cause severe food poisoning.
The strain of streptomycin-positive is those population of E. Coli which is significantly streptomycin resistant, while the negative strain has the opposite effect.
That's why if you want to grow up a large quantity of streptomycin-resistant, you must remarkably require to pick only a positive strain of streptomycin for E.Coli bacterium.
Therefore, if you want to grow up a large quantity of streptomycin-resistant E. coli, you would require to pick a colony of the bacteria from the streptomycin-positive plate and allow to grow it on a streptomycin-positive plate.
To learn more about E. Coli, refer to the link:
brainly.com/question/9046057
#SPJ4