Answer:
19
Step-by-step explanation:
El volumen <em>remanente</em> entre la esfera y el cubo es igual a 30.4897 centímetros cúbicos.
<h3>¿Cuál es el volumen remanente entre una caja cúbica vacía y una pelota?</h3>
En esta pregunta debemos encontrar el volumen <em>remanente</em> entre el espacio de una caja <em>cúbica</em> y una esfera introducida en el elemento anterior. El volumen <em>remanente</em> es igual a sustraer el volumen de la pelota del volumen de la caja.
Primero, se calcula los volúmenes del cubo y la esfera mediante las ecuaciones geométricas correspondientes:
Cubo
V = l³
V = (4 cm)³
V = 64 cm³
Esfera
V' = (4π / 3) · R³
V' = (4π / 3) · (2 cm)³
V' ≈ 33.5103 cm³
Segundo, determinamos la diferencia de volumen entre los dos elementos:
V'' = V - V'
V'' = 64 cm³ - 33.5103 cm³
V'' = 30.4897 cm³
El volumen <em>remanente</em> entre la esfera y el cubo es igual a 30.4897 centímetros cúbicos.
Para aprender más sobre volúmenes: brainly.com/question/23940577
#SPJ1
Answer:
Period ⇒ 40
Amplitude ⇒ 12
Mid-line ⇒ 32
Step-by-step explanation:
The table is counting by 4's and the period is the amount of space between 2 peaks. In this scenario, we can find the peaks by looking for two of the same highest value (44). We can see that x=40 has a value of 44 while the other is actually not shown because it would be located at x=0. Therefore the period is 40
<u />
The amplitude can be found by using the following:

Our maximum is 44 and our minimum is 20.



The amplitude is 12
The amplitude is the distance from the peak to the mid-line. To find the mid-line, we can either subtract our amplitude from our maximum value (44) or add our amplitude to our minimum value (20)
44 - 12 = 32
20 + 12 = 32
Therefore our mid-line is y = 32
~Hope this helps!~
D- 2x-1
plug in a number for x and you'll see
Hopefully this photo helps