SOLUTION:
PQR is a right-angle triangle.
Therefore, to solve this problem, we will use Pythagoras theorem which is only applicable to right-angle triangles.
Pythagoras theorem is as displayed below:
a^2 + b^2 = c^2
Where c = hypotenuse of right-angle triangle
Where a and b = other two sides of right-angle triangle
Now we will simply substitute the values from the problem into Pythagoras theorem in order to obtain the length of QR.
c = PQ = 16cm
a = PR = 8cm
b = QR = ?
a^2 + b^2 = c^2
( 8 )^2 + b^2 = ( 16 )^2
64 + b^2 = 256
b^2 = 256 - 64
b^2 = 192
b = square root of ( 192 )
b = 13.8564...
b = 13.86 ( to 2 decimal places )
FINAL ANSWER:
Therefore, the length of QR is 13.86 centimetres to 2 decimal places.
Hope this helps! :)
Have a lovely day! <3
Answer:
the angle abc is 180 degrees
Answer:
hello gret person i dont know wat i amdoing i am b
Answer:
(x, y) = (5, -2)
Step-by-step explanation:
A graphing calculator provides a quick and easy way to find the solution.
_____
There are several other ways to solve these equations. Or you can estimate where the answer might be using logic like this:
The intercepts of the first equation are ...
- x-intercept = 26/4 = 6 1/2
- y-intercept = -26/3 = -8 2/3
So the graph of it will form a triangle with the axes in the 4th quadrant.
The intercepts of the second equation are ...
- x-intercept = 11/3 = 3 2/3
- y-intercept = 11/2 = 5 1/2
So the graph of it will form a triangle with the axes in the 1st quadrant. The x-intercept of this one is less than the x-intercept of the first equation, so the two lines must cross in the 4th quadrant.
The only 4th-quadrant answer choice is (5, -2).
I think it’s A sorry if I’m wrong:)