37. 6r^2
41. B
42. B
44. C
The domain is all real numbers
C. Is the answer to your question
1) Change radical forms to fractional exponents using the rule:The n<span>th root of "</span>a number" = "that number" raised to the<span> reciprocal of n.
For example </span>
![\sqrt[n]{3} = 3^{ \frac{1}{n} }](https://tex.z-dn.net/?f=%20%5Csqrt%5Bn%5D%7B3%7D%20%3D%20%20%203%5E%7B%20%5Cfrac%7B1%7D%7Bn%7D%20%7D)
.
The square root of 3 (

) = 3 to the one-half power (

).
The 5th root of 3 (
![\sqrt[5]{3}](https://tex.z-dn.net/?f=%20%5Csqrt%5B5%5D%7B3%7D%20)
) = 3 to the one-fifth power (

).
2) Now use the product of powers exponent rule to simplify:This rule says

. When two expressions with the same base (a, in this example) are multiplied, you
can add their exponents while keeping the same base.
You now have

. These two expressions have the same base, 3. That means you can add their exponents:
3) You can leave it in the form
or change it back into a radical ![\sqrt[10]{3^7}](https://tex.z-dn.net/?f=%20%5Csqrt%5B10%5D%7B3%5E7%7D%20)
------
Answer:
or
Answer:
Zero, based on the information provided.
Step-by-step explanation:
The output rate of the teller machine is (1 transaction/6 minutes). The input rate is (1 customer/10 minutes). This means that the machine completes a cycle faster than the customers arrive, on the average. I don't know how an average can be calculated without more information. If we assume customers arrive every 10 minutes, and no one screws up the machine, that there should be no waiting line. Is there more information about when the customers arrive? E.g., 50 arrive in the first hour the machine is open.