1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Oksi-84 [34.3K]
3 years ago
15

PLEASE HELPP!!!!!!

Mathematics
2 answers:
Kisachek [45]3 years ago
5 0

Answer:

1:144 inches

Step-by-step explanation:

frosja888 [35]3 years ago
3 0

Answer:

1:144

Step-by-step explanation:

if each floor is 15 feet, the whole building is 60 feet tall. so it does have a scale of 5 inches:60 feet but if you simplify that, its 1 inch: 12 feet, so you convert feet into inches by multiplying by twelve, which gives you a scale of 1:144 inches

You might be interested in
For the following telescoping series, find a formula for the nth term of the sequence of partial sums {Sn}. Then evaluate limn→[
Ivenika [448]

Answer:

The following are the solution to the given points:

Step-by-step explanation:

Given value:

1) \sum ^{\infty}_{k = 1} \frac{1}{k+1} - \frac{1}{k+2}\\\\2) \sum ^{\infty}_{k = 1} \frac{1}{(k+6)(k+7)}

Solve point 1 that is \sum ^{\infty}_{k = 1} \frac{1}{k+1} - \frac{1}{k+2}\\\\:

when,

k= 1 \to  s_1 = \frac{1}{1+1} - \frac{1}{1+2}\\\\

                  = \frac{1}{2} - \frac{1}{3}\\\\

k= 2 \to  s_2 = \frac{1}{2+1} - \frac{1}{2+2}\\\\

                  = \frac{1}{3} - \frac{1}{4}\\\\

k= 3 \to  s_3 = \frac{1}{3+1} - \frac{1}{3+2}\\\\

                  = \frac{1}{4} - \frac{1}{5}\\\\

k= n^  \to  s_n = \frac{1}{n+1} - \frac{1}{n+2}\\\\

Calculate the sum (S=s_1+s_2+s_3+......+s_n)

S=\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+\frac{1}{4}-\frac{1}{5}+.....\frac{1}{n+1}-\frac{1}{n+2}\\\\

   =\frac{1}{2}-\frac{1}{5}+\frac{1}{n+1}-\frac{1}{n+2}\\\\

When s_n \ \ dt_{n \to 0}

=\frac{1}{2}-\frac{1}{5}+\frac{1}{0+1}-\frac{1}{0+2}\\\\=\frac{1}{2}-\frac{1}{5}+\frac{1}{1}-\frac{1}{2}\\\\= 1 -\frac{1}{5}\\\\= \frac{5-1}{5}\\\\= \frac{4}{5}\\\\

\boxed{\text{In point 1:} \sum ^{\infty}_{k = 1} \frac{1}{k+1} - \frac{1}{k+2} =\frac{4}{5}}

In point 2: \sum ^{\infty}_{k = 1} \frac{1}{(k+6)(k+7)}

when,

k= 1 \to  s_1 = \frac{1}{(1+6)(1+7)}\\\\

                  = \frac{1}{7 \times 8}\\\\= \frac{1}{56}

k= 2 \to  s_1 = \frac{1}{(2+6)(2+7)}\\\\

                  = \frac{1}{8 \times 9}\\\\= \frac{1}{72}

k= 3 \to  s_1 = \frac{1}{(3+6)(3+7)}\\\\

                  = \frac{1}{9 \times 10} \\\\ = \frac{1}{90}\\\\

k= n^  \to  s_n = \frac{1}{(n+6)(n+7)}\\\\

calculate the sum:S= s_1+s_2+s_3+s_n\\

S= \frac{1}{56}+\frac{1}{72}+\frac{1}{90}....+\frac{1}{(n+6)(n+7)}\\\\

when s_n \ \ dt_{n \to 0}

S= \frac{1}{56}+\frac{1}{72}+\frac{1}{90}....+\frac{1}{(0+6)(0+7)}\\\\= \frac{1}{56}+\frac{1}{72}+\frac{1}{90}....+\frac{1}{6 \times 7}\\\\= \frac{1}{56}+\frac{1}{72}+\frac{1}{90}+\frac{1}{42}\\\\=\frac{45+35+28+60}{2520}\\\\=\frac{168}{2520}\\\\=0.066

\boxed{\text{In point 2:} \sum ^{\infty}_{k = 1} \frac{1}{(n+6)(n+7)} = 0.066}

8 0
2 years ago
Negative 10.9p plus 3.9 equals negative 9.18.... what does p equal
Julli [10]

Answer:

-1.2

Step-by-step explanation:

10.9p+3.9=-9.18

Subtract 3.9 from -9.18 to isolate the variable.

10.9p=-13.08

Divide -13.08 by 10.9

-13.08/10.9=-1.2

Which equals

p=-1.2

4 0
3 years ago
A number is cut in half
cupoosta [38]

Answer:

32

Step-by-step explanation:



7 0
1 year ago
Read 2 more answers
A random variable X with a probability density function () = {^-x > 0
Sliva [168]

The solutions to the questions are

  • The probability that X is between 2 and 4 is 0.314
  • The probability that X exceeds 3 is 0.199
  • The expected value of X is 2
  • The variance of X is 2

<h3>Find the probability that X is between 2 and 4</h3>

The probability density function is given as:

f(x)= xe^ -x for x>0

The probability is represented as:

P(x) = \int\limits^a_b {f(x) \, dx

So, we have:

P(2 < x < 4) = \int\limits^4_2 {xe^{-x} \, dx

Using an integral calculator, we have:

P(2 < x < 4) =-(x + 1)e^{-x} |\limits^4_2

Expand the expression

P(2 < x < 4) =-(4 + 1)e^{-4} +(2 + 1)e^{-2}

Evaluate the expressions

P(2 < x < 4) =-0.092 +0.406

Evaluate the sum

P(2 < x < 4) = 0.314

Hence, the probability that X is between 2 and 4 is 0.314

<h3>Find the probability that the value of X exceeds 3</h3>

This is represented as:

P(x > 3) = \int\limits^{\infty}_3 {xe^{-x} \, dx

Using an integral calculator, we have:

P(x > 3) =-(x + 1)e^{-x} |\limits^{\infty}_3

Expand the expression

P(x > 3) =-(\infty + 1)e^{-\infty}+(3+ 1)e^{-3}

Evaluate the expressions

P(x > 3) =0 + 0.199

Evaluate the sum

P(x > 3) = 0.199

Hence, the probability that X exceeds 3 is 0.199

<h3>Find the expected value of X</h3>

This is calculated as:

E(x) = \int\limits^a_b {x * f(x) \, dx

So, we have:

E(x) = \int\limits^{\infty}_0 {x * xe^{-x} \, dx

This gives

E(x) = \int\limits^{\infty}_0 {x^2e^{-x} \, dx

Using an integral calculator, we have:

E(x) = -(x^2+2x+2)e^{-x}|\limits^{\infty}_0

Expand the expression

E(x) = -(\infty^2+2(\infty)+2)e^{-\infty} +(0^2+2(0)+2)e^{0}

Evaluate the expressions

E(x) = 0 + 2

Evaluate

E(x) = 2

Hence, the expected value of X is 2

<h3>Find the Variance of X</h3>

This is calculated as:

V(x) = E(x^2) - (E(x))^2

Where:

E(x^2) = \int\limits^{\infty}_0 {x^2 * xe^{-x} \, dx

This gives

E(x^2) = \int\limits^{\infty}_0 {x^3e^{-x} \, dx

Using an integral calculator, we have:

E(x^2) = -(x^3+3x^2 +6x+6)e^{-x}|\limits^{\infty}_0

Expand the expression

E(x^2) = -((\infty)^3+3(\infty)^2 +6(\infty)+6)e^{-\infty} +((0)^3+3(0)^2 +6(0)+6)e^{0}

Evaluate the expressions

E(x^2) = -0 + 6

This gives

E(x^2) = 6

Recall that:

V(x) = E(x^2) - (E(x))^2

So, we have:

V(x) = 6 - 2^2

Evaluate

V(x) = 2

Hence, the variance of X is 2

Read more about probability density function at:

brainly.com/question/15318348

#SPJ1

<u>Complete question</u>

A random variable X with a probability density function f(x)= xe^ -x for x>0\\ 0& else

a. Find the probability that X is between 2 and 4

b. Find the probability that the value of X exceeds 3

c. Find the expected value of X

d. Find the Variance of X

7 0
2 years ago
Find the common ratio of the geometric sequence 6 , 24 , 96 , . . .
Lelu [443]

Answer:

4

Step-by-step explanation:

6 * 4 = 24

24 * 4 = 96

7 0
3 years ago
Other questions:
  • A juggler tosses a ball into the air . The balls height, h and time t seconds can be represented by the equation h(t)= -16t^2+40
    8·2 answers
  • What is the z score of a value that is 2.08 standard deviations greater than the mean
    12·1 answer
  • Which graph represents (x, y)-pairs that make the equation y=2x true?
    11·1 answer
  • The graph of which equation below is a horizontal line?
    12·1 answer
  • Help me I don't get it​
    9·2 answers
  • Find the value of K so that the line passing through the given points has slope M. Write an
    14·1 answer
  • Find the mean of 11,7,2,8​
    5·2 answers
  • BRAINLIEST!!! PLZZ HELP
    12·1 answer
  • HELP
    11·2 answers
  • Reflect the image over the y-axis and then translate 8 units down. What are the coordinates for C’?
    13·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!