He is wrong because as long as they have the same terms/ variables behind the number it doesn’t matter about if it is positive or negative
The equation in slope-intercept form for the line that passes through the point ( -1 , -2 ) and is perpendicular to the line − 4 x − 3 y = − 5 is 
<em><u>Solution:</u></em>
<em><u>The slope intercept form is given as:</u></em>
y = mx + c ----- eqn 1
Where "m" is the slope of line and "c" is the y - intercept
Given that the line that passes through the point ( -1 , -2 ) and is perpendicular to the line − 4 x − 3 y = − 5
Given line is perpendicular to − 4 x − 3 y = − 5
− 4 x − 3 y = − 5
-3y = 4x - 5
3y = -4x + 5

On comparing the above equation with eqn 1, we get,

We know that product of slope of a line and slope of line perpendicular to it is -1

Given point is (-1, -2)
Now we have to find the equation of line passing through (-1, -2) with slope 
Substitute (x, y) = (-1, -2) and m = 3/4 in eqn 1



Thus the required equation of line is found
Corner points in this graph are: ( 0,0 ) ( 0,8 ) ( 5,6 ) and ( 8, 0 ).
If we plug those values in : P = 2 x + 3 y
P ( 0,0 )= 0
P ( 0,8 ) = 2 * 0 + 3 * 8 = 24
P ( 6 , 5 ) = 2 * 6 + 3 * 5 = 12 + 15 = 27
P ( 8 , 0 ) = 2 * 8 + 3 * 0 = 16
The maximum value is:
P max ( 6 , 5 ) = 27
36 feet okay it is 36 feet of the area
To write an improper fraction a mixed number you start by seeing how many times the denominator (bottom number) goes in to the numerator (top number). Since the denominator is 9 and the numerator is 29, 9 goes into 29 3 times. The left over numbers become the fraction of which is in simplest form.
<em>3 x 9 = 27</em>
<em>29 - 27 = 2</em>
<u>Mixed number: 3 2/9</u>