Answer:
(r o g)(2) = 4
(q o r)(2) = 14
Step-by-step explanation:
Given


Solving (a): (r o q)(2)
In function:
(r o g)(x) = r(g(x))
So, first we calculate g(2)




Next, we calculate r(g(2))
Substitute 9 for g(2)in r(g(2))
r(q(2)) = r(9)
This gives:


{

Hence:
(r o g)(2) = 4
Solving (b): (q o r)(2)
So, first we calculate r(2)




Next, we calculate g(r(2))
Substitute 3 for r(2)in g(r(2))
g(r(2)) = g(3)




Hence:
(q o r)(2) = 14
Answer:

<em>Step-by-step explanation</em>
<em>thinked number = x</em>
<em>add 3 = +3 </em>

<em>multiply</em><em> </em><em>the</em><em> </em><em>result</em><em> </em><em>by</em><em> </em><em>7</em>
<em>
</em>
<em>hope</em><em> </em><em>this</em><em> </em><em>helps</em>
<em>brainliest</em><em> </em><em>appreciated</em>
<em>good</em><em> </em><em>luck</em><em>!</em><em> </em><em>have</em><em> </em><em>a</em><em> </em><em>nice</em><em> </em><em>day</em><em>!</em>
4n+7−(7n−8)
=4n+7+−1(7n−8)
=4n+7+−1(7n)+(−1)(−8)
=4n+7+−7n+8
Combine Like Terms
=4n+7+−7n+8
=(4n+−7n)+(7+8)
=−3n+15
The question is asking which of the following does not have side that are parallel. So which of them have lines that would never touch if they were never ending lines.
The opposite side pairs in a rectangle are congruent, so basically QT would be congruent to RS when you draw the rectangle and label the points.
4x+10=30
4x=20
x=5