Answer: -30b^2+76b+80
Explanation:
Multiply the second parenthesis by each term from the first parenthesis:
3b•2(-2•2+b+10)+4b•(-2b•2+b+10)+8(-2b•2+b+10)
Then distribute 3b•2 through the parenthesis
-24b^2+6b^2+60b+4b•(-2b•2+b+10)+8(-2b•2+b+10)
Then collect like terms
-30b^2+60b+40b-32b+8b+80
Collect like terms=
-30b+76b+80
Answer:
<h2>(f+g)(2) = 1</h2>
Step-by-step explanation:
Given :
f(x) = x − 3
g(x) = x² − x
Note : (f+g)(x) = f(x) + g(x)
then
(f+g)(2) = f(2) + g(2)
= (2 - 3) + (2² - 2)
= -1 + 2
= 1
another method:
(f+g)(x) = f(x) + g(x) = x − 3 + x² − x = x² - 3
then
(f+g)(2) = 2² - 3 = 4 - 3 = 1
Hope this helps good luck!!