Answer:
Largest angle is 94.22°
Explanation:
The sides of the triangle are given as 6 inches, 11 inches, 13 inches.
Now, we can find the respective interior angles of the triangle using cosine rule.
Thus, for the angle opposite 6 inches, let's label it A. Thus;
6² = 11² + 13² - 2(11 × 13)cos A
36 = 121 + 169 - 286cosA
36 = 290 - 286cos A
290 - 36 = 286cosA
cosA = 254/286
A = cos^(-1)0.8881
A = 27.36°
Similarly;
11² = 6² + 13² - 2(6 × 13)cos B
121 = 36 + 169 - 156cosB
121 = 205 - 156cos B
205 - 121 = 156cosB
cosB = 84/156
B = cos^(-1)0.5385
B = 57.42°
Sum of angles in a triangle is 180°
Thus;
C = 180 - (27.36 + 58.42)
C = 94.22°
Thus,largest angle is 94.22°