Answer:
448 ft^2
Step-by-step explanation:
The area of the walls is the perimeter of the room multiplied by the height.
P = 2(L + W)
P = 2(13 ft + 15 ft)
P = 2(28 ft)
P = 56 ft
A = perimeter * height
A = 56 ft * 8 ft
A = 448 ft^2
To convert a mixed fraction into an improper fraction, we must follow some steps.
First, we take the whole part and multiply it by the denominator of the fraction.
In this case, we take 2 and multiply it by 8.
Now we add the numerator:
16+3=19
The denominator stays the same:

Hope it helps! :)
Alright, let's do all of these (though this is a bit long).
1.
The constant is 1.8. All other values are coefficients to variables, which as the name implies will change.
2.
1 hour is 60 minutes, 1 minute is 60 seconds.
So, 4.2 *60 *60 = 15120 seconds.
3.
<span>−5x−4(x−6)=−3-5x-4(x-6)=-3
Let's move all x to one side, and all other numbers to another.
-5x-4(x-6)=-3-5x-4(x-6)=-3
x can be any value you want, if you actually solve this you'll only end up with -3 = -3, which is correct, of course.
Let me show you:
</span><span>−5x−4(x−6)=−3-5x-4(x-6)=-3
+5x +4(x-6) +5x +4(x-6)
-3 = -3
The value of x is irrelevant, then. X can be any real number.
4.
I'm going to assume it was an error in printing with this? If not please correct me.
m=a+2b(or b2)
subtract 2b from each
a=m-2b
(This question seems kind of odd. We should probably address this in the comments.)
5.
</span><span>5(x−2)<−3x+6
Move all x to one side, numbers to other.
5x-10<-3x+6
+3x +3x
+10 +10
8x<16
/8
<span>x < 2
</span>6.
y-3=3(x-5)
alright, to find zeros set one variable to zero and solve
x first
-3=3x-15
+15 +15
3x=12
/3
x=4
x-int is (4,0)
now y
</span>y-3=3(0-5)
y-3=-15
+3 +3
y=-12
so y-int is (0,-12)
i've got to sleep now so i'll do the rest tomorrow. Sorry for the incomplete answer.
Answer:
1.2
Step-by-step explanation:
If you multiply the length by the width to find area, then you can divide the area by the width to find the length.
÷
= 1.2
Answer:
x = 1, y = 10
Step-by-step explanation:
y = -5x + 15 --- Equation 1
2x + y = 12 --- Equation 2
Substitute y = -5x + 15 into Equation 2:
2x + y = 12
2x - 5x + 15 = 12
Evaluate like terms.
15 - 3x = 12
Isolate -3x.
-3x = 12 - 15
Evaluate like terms.
-3x = -3
Find x.
x = -3 ÷ -3
x = 1
Substitute x = 1 into Equation 2:
2x + y = 12
2(1) + y = 12
2 + y = 12
Isolate y.
y = 12 - 2
y = 10