Answer:
Pretty sure its the third option
Step-by-step explanation:
Your answer is 7/40 or 0.175
<em>Hey</em><em>!</em><em>!</em><em>!</em>
<em>In</em><em> </em><em>ques</em><em>tion</em><em> </em><em>no</em><em>.</em><em>4</em><em>,</em><em> </em><em>we</em><em> </em><em>have</em><em> </em><em>to </em><em><u>subtract</u></em><em><u> </u></em><em><u>the</u></em><em><u> </u></em><em><u>equation</u></em><em><u>.</u></em>
<em>In</em><em> </em><em>ques</em><em>tion</em><em> </em><em>no</em><em>.</em><em>5</em><em> </em><em>we</em><em> </em><em>have</em><em> </em><em>to</em><em><u> </u></em><em><u>add</u></em><em><u> </u></em><em><u>the </u></em><em><u>equation</u></em><em><u>.</u></em>
<em>Hope </em><em>it</em><em> </em><em>will</em><em> </em><em>help</em><em> </em><em>you</em><em>.</em><em>.</em><em>.</em>
<h3>
<em><u>Have</u></em><em><u> </u></em><em><u>a</u></em><em><u> </u></em><em><u>great</u></em><em><u> </u></em><em><u>day</u></em></h3>
Answer:
a)0.08 , b)0.4 , C) i)0.84 , ii)0.56
Step-by-step explanation:
Given data
P(A) = professor arrives on time
P(A) = 0.8
P(B) = Student aarive on time
P(B) = 0.6
According to the question A & B are Independent
P(A∩B) = P(A) . P(B)
Therefore
&
is also independent
= 1-0.8 = 0.2
= 1-0.6 = 0.4
part a)
Probability of both student and the professor are late
P(A'∩B') = P(A') . P(B') (only for independent cases)
= 0.2 x 0.4
= 0.08
Part b)
The probability that the student is late given that the professor is on time
=
=
= 0.4
Part c)
Assume the events are not independent
Given Data
P
= 0.4
=
= 0.4

= 0.4 x P
= 0.4 x 0.4 = 0.16
= 0.16
i)
The probability that at least one of them is on time
= 1-
= 1 - 0.16 = 0.84
ii)The probability that they are both on time
P
= 1 -
= 1 - ![[P({A}')+P({B}') - P({A}'\cap {B}')]](https://tex.z-dn.net/?f=%5BP%28%7BA%7D%27%29%2BP%28%7BB%7D%27%29%20-%20P%28%7BA%7D%27%5Ccap%20%7BB%7D%27%29%5D)
= 1 - [0.2+0.4-0.16] = 1-0.44 = 0.56