
<h3><u>Given</u><u> </u><u>:</u><u>-</u></h3>
- The radius of the hemisphere is 3 units
- The height of the hemisphere is 3 units
- The height of the triangle is 4 units
- The other two sides of triangle is 5 units each
<h3><u>To </u><u>Find </u><u>:</u><u>-</u></h3>
- <u>We have to find the area and perimeter of the composite solid ?</u>
<h3><u>Let's </u><u>Begin </u><u>:</u><u>-</u><u> </u></h3>
We have given one composite which is composed of hemisphere and triangle
<u>We </u><u>know </u><u>that</u><u>, </u>
<u>Perimeter </u><u>of </u><u>hemisphere </u>

Perimeter of the triangle

[ Both the figures have common base area ]
<h3><u>Therefore</u><u>, </u></h3>
Total perimeter of the composite solid






Thus, The perimeter of the composite solid is 19.42 inches
<h3>
<u>Now</u><u>, </u></h3>
<u>We </u><u>have </u><u>to </u><u>find </u><u>the </u><u>area </u><u>of </u><u>composite </u><u>solid </u>
We know that,
Area of hemisphere






<u>We </u><u>also </u><u>know </u><u>that</u><u>, </u>
Area of triangle

<u>Subsitute </u><u>the </u><u>required </u><u>values</u><u>, </u>



- [Note :- Both the figures have common base area. So for triangle base area will be 6/2 = 3 in.]
<h3><u>Therefore</u><u>,</u><u> </u></h3>
Total Area of the composite solid


Hence, The perimeter and area of composite solid is 19.42 inches and 20.14 inches .