1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Nata [24]
3 years ago
11

Consider the linear equation x- 3/2y = 2

Mathematics
1 answer:
Allisa [31]3 years ago
7 0

Answer:

don't know

Step-by-step explanation:

not really sure

You might be interested in
If x=y-7 what is the value of 3x-3 in terms of y
beks73 [17]
\bf \boxed{x}=y-7
\\\\\\
3x-3\implies 3\left( \boxed{y-7} \right)-3\implies 3y-21-3\implies 3y-24
7 0
3 years ago
Describe the steps to dividing imaginary numbers and complex numbers with two terms in the denominator?
zlopas [31]

Answer:

Let be a rational complex number of the form z = \frac{a + i\,b}{c + i\,d}, we proceed to show the procedure of resolution by algebraic means:

1) \frac{a + i\,b}{c + i\,d}   Given.

2) \frac{a + i\,b}{c + i\,d} \cdot 1 Modulative property.

3) \left(\frac{a+i\,b}{c + i\,d} \right)\cdot \left(\frac{c-i\,d}{c-i\,d} \right)   Existence of additive inverse/Definition of division.

4) \frac{(a+i\,b)\cdot (c - i\,d)}{(c+i\,d)\cdot (c - i\,d)}   \frac{x}{y}\cdot \frac{w}{z} = \frac{x\cdot w}{y\cdot z}  

5) \frac{a\cdot (c-i\,d) + (i\,b)\cdot (c-i\,d)}{c\cdot (c-i\,d)+(i\,d)\cdot (c-i\,d)}  Distributive and commutative properties.

6) \frac{a\cdot c + a\cdot (-i\,d) + (i\,b)\cdot c +(i\,b) \cdot (-i\,d)}{c^{2}-c\cdot (i\,d)+(i\,d)\cdot c+(i\,d)\cdot (-i\,d)} Distributive property.

7) \frac{a\cdot c +i\,(-a\cdot d) + i\,(b\cdot c) +(-i^{2})\cdot (b\cdot d)}{c^{2}+i\,(c\cdot d)+[-i\,(c\cdot d)] +(-i^{2})\cdot d^{2}} Definition of power/Associative and commutative properties/x\cdot (-y) = -x\cdot y/Definition of subtraction.

8) \frac{(a\cdot c + b\cdot d) +i\cdot (b\cdot c -a\cdot d)}{c^{2}+d^{2}} Definition of imaginary number/x\cdot (-y) = -x\cdot y/Definition of subtraction/Distributive, commutative, modulative and associative properties/Existence of additive inverse/Result.

Step-by-step explanation:

Let be a rational complex number of the form z = \frac{a + i\,b}{c + i\,d}, we proceed to show the procedure of resolution by algebraic means:

1) \frac{a + i\,b}{c + i\,d}   Given.

2) \frac{a + i\,b}{c + i\,d} \cdot 1 Modulative property.

3) \left(\frac{a+i\,b}{c + i\,d} \right)\cdot \left(\frac{c-i\,d}{c-i\,d} \right)   Existence of additive inverse/Definition of division.

4) \frac{(a+i\,b)\cdot (c - i\,d)}{(c+i\,d)\cdot (c - i\,d)}   \frac{x}{y}\cdot \frac{w}{z} = \frac{x\cdot w}{y\cdot z}  

5) \frac{a\cdot (c-i\,d) + (i\,b)\cdot (c-i\,d)}{c\cdot (c-i\,d)+(i\,d)\cdot (c-i\,d)}  Distributive and commutative properties.

6) \frac{a\cdot c + a\cdot (-i\,d) + (i\,b)\cdot c +(i\,b) \cdot (-i\,d)}{c^{2}-c\cdot (i\,d)+(i\,d)\cdot c+(i\,d)\cdot (-i\,d)} Distributive property.

7) \frac{a\cdot c +i\,(-a\cdot d) + i\,(b\cdot c) +(-i^{2})\cdot (b\cdot d)}{c^{2}+i\,(c\cdot d)+[-i\,(c\cdot d)] +(-i^{2})\cdot d^{2}} Definition of power/Associative and commutative properties/x\cdot (-y) = -x\cdot y/Definition of subtraction.

8) \frac{(a\cdot c + b\cdot d) +i\cdot (b\cdot c -a\cdot d)}{c^{2}+d^{2}} Definition of imaginary number/x\cdot (-y) = -x\cdot y/Definition of subtraction/Distributive, commutative, modulative and associative properties/Existence of additive inverse/Result.

3 0
3 years ago
Pls help me with my homework I need help
Mandarinka [93]

Answer:

need points luvk

Step-by-step explanation:

3 0
3 years ago
Read 2 more answers
13 inches = __ ft<br> PLS HELP PLS
Radda [10]

Answer:

1.083

Step-by-step explanation:

5 0
3 years ago
Read 2 more answers
Send help please!! i want to complete it asap
Nadusha1986 [10]
It’s a little complicated but here’s how it works:
Imagine a table with the intervals
0:4 , 4:6 , 6:7 , 7:10 , 10:13 (10 year intervals)
Then we have different rows
Class width: 4 , 2 , 1 , 3 , 3
Freq density: 0.2 , 0.5 , 1.2 , 0.7 , 0.3
So now calculate frequency where freq = class width * density
Freq: 0.8 , 1 , 3.6 , 2.1 , 0.9
So to find median find cumulative frequency
(Add all freq)
Cfreq = 8.4 now divide by 2 = 4.2
So find the interval where 4.2 lies.
0.8 + 1 = 1.8 + 3.6 = 5.6

So 4.2 (median) will lie in that interval 60-70 years.
7 0
3 years ago
Other questions:
  • Perform the indicated operation.
    5·1 answer
  • what decimal point is between 1.5 and 1.7 and i know its 1.6 but on my homework it wont say 1.6 it says 1.625 , 1.25 , 1.75 , 1.
    11·1 answer
  • Find the volume of following cube:<br><br> Figure is not drawn to scale<br><br> Volume of the cube =
    5·1 answer
  • What is the slope intercept form of the equation of the line passing through the point 2,-3 having a slope of m=-1/2?
    10·1 answer
  • How to do unit ratios
    6·1 answer
  • Successful implementation of a new system is based on three independent modules. Module 1 works properly with probability 0.9, M
    9·1 answer
  • Which of the following is the set of all real number x such that x-2 &lt; x-4?
    14·1 answer
  • Which function is the inverse of f Superscript negative 1 Baseline (x) = negative one-half x minus three-halves?
    9·2 answers
  • Help plz <br> ASAP <br> Due at 11:59
    6·2 answers
  • What is the measurement of angle g?
    5·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!